File size: 1,270 Bytes
ac0560a
eae79e1
 
ac0560a
eae79e1
ac0560a
eae79e1
61fce60
 
 
 
 
 
 
01e7f12
61fce60
 
 
 
 
 
 
80352c6
61fce60
 
 
 
 
 
 
 
 
f1d0f63
61fce60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
```
model: single_linear
config: Int4WeightOnlyConfig, with preshuffled packing format
config version: 2
torchao version: 0.13.dev
```

```
import torch
import io

model = torch.nn.Sequential(torch.nn.Linear(32, 256, dtype=torch.bfloat16, device="cuda"))

from torchao.quantization import Int4WeightOnlyConfig, quantize_
quant_config = Int4WeightOnlyConfig(group_size=128, int4_packing_format="preshuffled", version=2)
quantize_(model, quant_config)
example_inputs = (torch.randn(2, 32, dtype=torch.bfloat16, device="cuda"),)
output = model(*example_inputs)

# Push to hub
USER_ID = "torchao-testing"
MODEL_NAME = "single-linear"
save_to = f"{USER_ID}/{MODEL_NAME}-Int4WeightOnlyConfig-preshuffled-v2-0.13.dev"

from huggingface_hub import HfApi
api = HfApi()

buf = io.BytesIO()
torch.save(model.state_dict(), buf)
api.create_repo(save_to, repo_type="model", exist_ok=True)
api.upload_file(
    path_or_fileobj=buf,
    path_in_repo="model.pt",
    repo_id=save_to,
)

buf = io.BytesIO()
torch.save(example_inputs, buf)
api.upload_file(
    path_or_fileobj=buf,
    path_in_repo="model_inputs.pt",
    repo_id=save_to,
)

buf = io.BytesIO()
torch.save(output, buf)
api.upload_file(
    path_or_fileobj=buf,
    path_in_repo="model_output.pt",
    repo_id=save_to,
)
```