File size: 17,490 Bytes
ff71dd3 0cb565f ff71dd3 0cb565f 56e900a 0cb565f fe87ab3 0cb565f fe87ab3 0cb565f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
from typing import Union, Optional, TYPE_CHECKING
import torch
from transformers import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
from transformers.generation.utils import (
GenerateBeamOutput,
GenerationMixin,
GenerateBeamDecoderOnlyOutput,
GenerateBeamEncoderDecoderOutput,
)
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import logging
from .beam_constraints import DisjunctiveConstraint, PhrasalConstraint
from .beam_search import ConstrainedBeamSearchScorer
if TYPE_CHECKING:
from transformers.generation.streamers import BaseStreamer
logger = logging.getLogger(__name__)
def _constrained_beam_search(
model,
input_ids: torch.LongTensor,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: Optional["BaseStreamer"] = None,
**model_kwargs,
) -> Union[GenerateBeamOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head using **constrained beam search
decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size*num_beams, sequence_length)`):
The sequence used as a prompt for the generation.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
generation_config ([`~generation.GenerationConfig`]):
The generation configuration to be used as parametrization of the decoding method.
synced_gpus (`bool`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
model_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
`torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
"""
if generation_config.constraints is not None or generation_config.force_words_ids is not None:
constrained_wrong_parameter_msg = (
"one of `constraints`, `force_words_ids` is not `None`, triggering constrained beam search. "
"However, `{flag_name}` is set to `{flag_value}`, which is incompatible with this generation "
"mode. Set `constraints` and `force_words_ids` to `None` or unset `{flag_name}` to continue."
)
if generation_config.do_sample is True:
raise ValueError(
constrained_wrong_parameter_msg.format(flag_name="do_sample", flag_value=generation_config.do_sample)
)
final_constraints = []
if generation_config.constraints is not None:
final_constraints = generation_config.constraints
if generation_config.force_words_ids is not None:
def typeerror():
raise ValueError(
"`force_words_ids` has to either be a `list[list[list[int]]]` or `list[list[int]]` "
f"of positive integers, but is {generation_config.force_words_ids}."
)
if (
not isinstance(generation_config.force_words_ids, list)
or len(generation_config.force_words_ids) == 0
):
typeerror()
for word_ids in generation_config.force_words_ids:
if isinstance(word_ids[0], list):
if not isinstance(word_ids, list) or len(word_ids) == 0:
typeerror()
if any(not isinstance(token_ids, list) for token_ids in word_ids):
typeerror()
if any(
any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids)
for token_ids in word_ids
):
typeerror()
constraint = DisjunctiveConstraint(word_ids)
else:
if not isinstance(word_ids, list) or len(word_ids) == 0:
typeerror()
if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids):
typeerror()
constraint = PhrasalConstraint(word_ids)
final_constraints.append(constraint)
# define beam scorer
constrained_beam_scorer = ConstrainedBeamSearchScorer(
constraints=final_constraints,
batch_size=input_ids.shape[0] // generation_config.num_beams,
num_beams=generation_config.num_beams,
device=input_ids.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
max_length=generation_config.max_length,
)
# init values
pad_token_id = generation_config._pad_token_tensor
eos_token_id = generation_config._eos_token_tensor
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
batch_size = len(constrained_beam_scorer._beam_hyps)
num_beams = constrained_beam_scorer.num_beams
batch_beam_size, cur_len = input_ids.shape[:2]
model_kwargs = model._get_initial_cache_position(cur_len, input_ids.device, model_kwargs)
if num_beams * batch_size != batch_beam_size:
raise ValueError(
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
beam_indices = (
tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
)
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and model.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
# of the first beam are considered to avoid sampling the exact same tokens across all beams.
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size * num_beams,))
this_peer_finished = False
decoder_prompt_len = input_ids.shape[1] # record the prompt length of decoder
while model._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
# prepare variable output controls (note: some models won't accept all output controls)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
outputs = model(**model_inputs, return_dict=True)
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
model_kwargs = model._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=model.config.is_encoder_decoder,
)
if synced_gpus and this_peer_finished:
cur_len = cur_len + 1
continue
# Copy is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
# (the clone itself is always small)
# .float() is needed to retain precision for later logits manipulations
next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32, device=input_ids.device)
next_token_scores = nn.functional.log_softmax(
next_token_logits, dim=-1
) # (batch_size * num_beams, vocab_size)
next_token_scores_processed = logits_processor(input_ids, next_token_scores)
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
next_token_scores_processed
)
scores_for_all_vocab = next_token_scores.clone()
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if model.config.is_encoder_decoder else (outputs.attentions,)
)
if model.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if model.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# reshape for beam search
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
# Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
next_token_scores, next_tokens = torch.topk(
next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
)
next_indices = (next_tokens / vocab_size).long()
next_tokens = next_tokens % vocab_size
# stateless
beam_outputs = constrained_beam_scorer.process(
input_ids,
next_token_scores,
next_tokens,
next_indices,
scores_for_all_vocab,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
beam_indices=beam_indices,
decoder_prompt_len=decoder_prompt_len,
)
beam_scores = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
# This is needed to properly delete outputs.logits which may be very large for first iteration
# Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
# IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory
# (that way the memory peak does not include outputs.logits)
del outputs
# NOTE: we need to check if `model._reorder_cache` exists for special models like RAG, RecurrentGemma etc.
if model_kwargs.get("past_key_values", None) is not None:
if hasattr(model, "_reorder_cache"):
model_kwargs["past_key_values"] = model._reorder_cache(model_kwargs["past_key_values"], beam_idx)
else:
model_kwargs["past_key_values"].reorder_cache(beam_idx)
if return_dict_in_generate and output_scores:
beam_indices = tuple(beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices)))
# increase cur_len
cur_len = cur_len + 1
if constrained_beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
this_peer_finished = True
sequence_outputs = constrained_beam_scorer.finalize(
input_ids,
beam_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
beam_indices=beam_indices,
decoder_prompt_len=decoder_prompt_len,
)
if return_dict_in_generate:
if not output_scores:
sequence_outputs["sequence_scores"] = None
if model.config.is_encoder_decoder:
return GenerateBeamEncoderDecoderOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
logits=raw_logits,
beam_indices=sequence_outputs["beam_indices"],
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return GenerateBeamDecoderOnlyOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
logits=raw_logits,
beam_indices=sequence_outputs["beam_indices"],
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return sequence_outputs["sequences"]
def generate(model, *args, **kwargs):
"""Custom generate function for constrained beam search decoding.
Args:
model (`PreTrainedModel`):
The model to generate from.
num_beams (`int`): The number of beams to use for beam search.
constraints (`list[Constraint]`, *optional*):
Custom constraints that can be added to the generation to ensure that the output will contain the use of
certain tokens as defined by `Constraint` objects, in the most sensible way possible.
force_words_ids (`list[list[list[int]]]`): List of token ids that must be generated. If given a `list[list[int]]`, this is treated as a simple list of
words that must be included, the opposite to `bad_words_ids`. If given `list[list[list[int]]]`, this
triggers a [disjunctive constraint](https://github.com/huggingface/transformers/issues/14081), where one
can allow different forms of each word.
length_penalty (`float`): The length penalty to use for beam search.
early_stopping (`bool`): Whether to stop beam search when sufficient beams have finished.
num_return_sequences (`int`): The number of sequences to return.
max_length (`int`): The maximum length of the generated sequence.
"""
generation_outputs = GenerationMixin.generate(
model, *args, custom_generate=_constrained_beam_search, **kwargs
)
return generation_outputs
|