File size: 28,497 Bytes
7d89f91
 
 
 
9da4cff
7d89f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6891872
 
 
7d89f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a86b09
7d89f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a86b09
7d89f91
 
 
 
 
 
6891872
 
 
 
 
7d89f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a86b09
7d89f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a86b09
7d89f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e37df0
 
 
 
 
 
 
 
 
 
 
6891872
1e37df0
 
 
 
 
6891872
7d89f91
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
from typing import Union, Optional, TYPE_CHECKING
import torch
from transformers import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
from transformers.generation.utils import (
    GenerationMixin,
    GenerateNonBeamOutput,
    GenerateDecoderOnlyOutput,
)
from transformers.cache_utils import Cache, EncoderDecoderCache, DynamicCache
from transformers.modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
from transformers.generation.utils import GenerateEncoderDecoderOutput, ALL_CACHE_NAMES
from transformers.utils import ModelOutput
from transformers.configuration_utils import PretrainedConfig
import torch.nn as nn
import logging

if TYPE_CHECKING:
    from transformers.generation.streamers import BaseStreamer

logger = logging.getLogger(__name__)


def stack_model_outputs(
    model_outputs: list[ModelOutput], config: PretrainedConfig
) -> ModelOutput:
    """
    Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the
    specific ModelOutput subclass from the list provided.
    """
    if not model_outputs:
        raise ValueError("Input list is empty.")

    # Infer the class from the first object in the list
    model_output_cls = type(model_outputs[0])

    # Ensure all objects are of the same type
    if not all(isinstance(obj, model_output_cls) for obj in model_outputs):
        raise ValueError("All elements in the list should be of the same type.")

    # Helper function to concat tensors or tuples of tensors
    def _concat(data):
        """
        Reverse of `_split` function above.
        """
        if any(data is None for data in data):
            return None
        if isinstance(data[0], torch.Tensor):
            return torch.cat(data, dim=0)
        elif isinstance(data[0], tuple):
            # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
            if isinstance(data[0][0], tuple):
                return tuple(
                    tuple(
                        torch.cat([attr[i][j] for attr in data], dim=0)
                        for j in range(len(data[0][0]))
                    )
                    for i in range(len(data[0]))
                )
            else:
                return tuple(
                    torch.cat([attr[i] for attr in data], dim=0)
                    for i in range(len(data[0]))
                )
        elif isinstance(data[0], (int, float)):
            # If the elements are integers or floats, return a tensor
            return torch.tensor(data)
        else:
            raise TypeError(f"Unexpected attribute type: {type(data[0])}")

    # Use a dictionary comprehension to gather attributes from all objects and concatenate them
    concatenated_data = {
        k: _concat([getattr(model_output, k) for model_output in model_outputs])
        for k in model_output_cls.__dataclass_fields__
    }

    # Return a new object of the inferred class with the concatenated attributes
    return model_output_cls(**concatenated_data)


def _ranking_fast(
    context_hidden: torch.FloatTensor,
    next_hidden: torch.FloatTensor,
    next_top_k_probs: torch.FloatTensor,
    cosine_matrix_mask: torch.LongTensor,
    alpha: float,
    beam_width: int,
) -> torch.FloatTensor:
    """
    Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
    in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
    row in the batch.
    """
    norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
    norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
    cosine_matrix = torch.matmul(
        norm_context_hidden, norm_next_hidden.transpose(1, 2)
    ).squeeze(-1)  # [B*K, S]

    # Penalize cosine_matrix based on the cosine_matrix_mask (ignore padding positions)
    # Using a large negative value for masked positions
    cosine_matrix_mask = cosine_matrix_mask.to(dtype=cosine_matrix.dtype)
    cosine_matrix_mask = (1 - cosine_matrix_mask) * torch.finfo(cosine_matrix.dtype).min
    cosine_matrix = cosine_matrix + cosine_matrix_mask

    degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1)  # [B*K]
    next_top_k_probs = next_top_k_probs.view(-1)  # [B*K]
    contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
    contrastive_score = torch.stack(
        torch.split(contrastive_score, beam_width)
    )  # [B, K]
    _, selected_idx = contrastive_score.max(dim=-1)  # [B]
    return selected_idx


@torch.no_grad()
def _contrastive_search(
    model,
    input_ids: torch.LongTensor,
    logits_processor: LogitsProcessorList,
    stopping_criteria: StoppingCriteriaList,
    generation_config: GenerationConfig,
    synced_gpus: bool,
    streamer: Optional["BaseStreamer"],
    **model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
    r"""
    Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
    be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

    Parameters:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The sequence used as a prompt for the generation.
        logits_processor (`LogitsProcessorList`):
            An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
            used to modify the prediction scores of the language modeling head applied at each generation step.
        stopping_criteria (`StoppingCriteriaList`):
            An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
            used to tell if the generation loop should stop.
        generation_config ([`~generation.GenerationConfig`]):
            The generation configuration to be used as parametrization of the decoding method.
        synced_gpus (`bool`):
            Whether to continue running the while loop until max_length (needed to avoid deadlocking with
            `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
        streamer (`BaseStreamer`, *optional*):
            Streamer object that will be used to stream the generated sequences. Generated tokens are passed
            through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
        model_kwargs:
            Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
            If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

    Return:
        [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`]
        or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
        [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
        `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
        `model.config.is_encoder_decoder=True`.
    """
    if not model_kwargs["use_cache"]:
        raise ValueError("Contrastive search requires `use_cache=True`")
    if model._is_stateful:
        # Just like assisted generation, we need to be able to rollback to a previous state (see comment above)
        raise ValueError(
            f"contrastive search is not supported with stateful models, such as {model.__class__.__name__}"
        )
    # init values
    has_eos_stopping_criteria = any(
        hasattr(criteria, "eos_token_id") for criteria in stopping_criteria
    )
    top_k = generation_config.top_k
    penalty_alpha = generation_config.penalty_alpha
    pad_token_id = generation_config._pad_token_tensor
    output_attentions = generation_config.output_attentions
    output_hidden_states = generation_config.output_hidden_states
    output_scores = generation_config.output_scores
    output_logits = generation_config.output_logits
    return_dict_in_generate = generation_config.return_dict_in_generate
    sequential = generation_config.low_memory

    # init attention / hidden states / scores tuples
    raw_logits = () if (return_dict_in_generate and output_logits) else None
    scores = () if (return_dict_in_generate and output_scores) else None
    decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
    cross_attentions = () if (return_dict_in_generate and output_attentions) else None
    decoder_hidden_states = (
        () if (return_dict_in_generate and output_hidden_states) else None
    )

    # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
    if return_dict_in_generate and model.config.is_encoder_decoder:
        encoder_attentions = (
            model_kwargs["encoder_outputs"].get("attentions")
            if output_attentions
            else None
        )
        encoder_hidden_states = (
            model_kwargs["encoder_outputs"].get("hidden_states")
            if output_hidden_states
            else None
        )

    # keep track of which sequences are already finished
    batch_size, cur_len = input_ids.shape[:2]
    unfinished_sequences = torch.ones(
        batch_size, dtype=torch.long, device=input_ids.device
    )
    model_kwargs = model._get_initial_cache_position(
        cur_len, input_ids.device, model_kwargs
    )

    # Create cosine_matrix_mask based on the attention_mask
    cosine_matrix_mask = torch.ones_like(input_ids, dtype=torch.long)
    if model.config.is_encoder_decoder:
        if (
            "decoder_attention_mask" in model_kwargs
            and model_kwargs["decoder_attention_mask"] is not None
        ):
            cosine_matrix_mask = model_kwargs["decoder_attention_mask"]
    else:
        cosine_matrix_mask = model_kwargs["attention_mask"]
    cosine_matrix_mask = cosine_matrix_mask.repeat_interleave(top_k, dim=0)

    this_peer_finished = False

    while model._has_unfinished_sequences(
        this_peer_finished, synced_gpus, device=input_ids.device
    ):
        # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
        # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
        if model_kwargs.get("past_key_values") is None or (
            isinstance(model_kwargs["past_key_values"], (Cache, EncoderDecoderCache))
            and model_kwargs["past_key_values"].get_seq_length() == 0
        ):
            # prepare inputs
            model_kwargs["use_cache"] = True
            model_inputs = model.prepare_inputs_for_generation(
                input_ids, **model_kwargs
            )

            # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
            # the `encoder_outputs`
            outputs = model(
                **model_inputs,
                return_dict=True,
                output_hidden_states=True,
                output_attentions=output_attentions,
            )

            # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
            # previous tokens)
            if model.config.is_encoder_decoder:
                last_hidden_states = outputs.decoder_hidden_states[-1]
            else:
                last_hidden_states = outputs.hidden_states[-1]

            # next logit for contrastive search to select top-k candidate tokens
            # Copy is needed to avoid keeping a hanging ref to outputs.logits which may be very large for this first iteration
            # (the clone itmodel is always small)
            # torch.float32 is needed to retain precision for later logits manipulations
            logit_for_next_step = outputs.logits[:, -1, :].to(
                copy=True, dtype=torch.float32, device=input_ids.device
            )

            model_kwargs = model._update_model_kwargs_for_generation(
                outputs,
                model_kwargs,
                is_encoder_decoder=model.config.is_encoder_decoder,
            )

            if not sequential:
                # Expands model inputs top_k times, for batched forward passes (akin to beam search).
                # input_ids is required for expanding visual inputs in qwen2vl
                _, model_kwargs = model._expand_inputs_for_generation(
                    input_ids=input_ids,
                    expand_size=top_k,
                    is_encoder_decoder=model.config.is_encoder_decoder,
                    **model_kwargs,
                )

            past_key_values = model_kwargs.get("past_key_values")
            if past_key_values is None:
                raise ValueError(
                    f"{model.__class__.__name__} does not support caching and therefore **can't** be used "
                    "for contrastive search."
                )
            elif (
                not isinstance(past_key_values[0], (tuple, torch.Tensor))
                or past_key_values[0][0].shape[0] != batch_size
            ):
                raise ValueError(
                    f"{model.__class__.__name__} does not have a standard cache format and therefore **can't** be "
                    "used for contrastive search without further modifications."
                )

        # contrastive_search main logic start:
        # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
        # degeneration penalty
        processed_logit_for_next_step = logits_processor(input_ids, logit_for_next_step)
        next_probs = nn.functional.softmax(processed_logit_for_next_step, dim=-1)

        top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k)

        # Store scores, attentions and hidden_states when required
        if return_dict_in_generate:
            if output_logits:
                raw_logits += (logit_for_next_step,)
            if output_scores:
                scores += (processed_logit_for_next_step,)
            if output_attentions:
                decoder_attentions += (
                    (outputs.decoder_attentions,)
                    if model.config.is_encoder_decoder
                    else (outputs.attentions,)
                )
                if model.config.is_encoder_decoder:
                    cross_attentions += (outputs.cross_attentions,)

            if output_hidden_states:
                decoder_hidden_states += (
                    (outputs.decoder_hidden_states,)
                    if model.config.is_encoder_decoder
                    else (outputs.hidden_states,)
                )

        # This is needed to properly delete outputs.logits which may be very large for this first iteration
        # Otherwise a reference to outputs.logits is kept all along until after the next call to model.forward()
        del outputs

        if not sequential:
            # Replicates the new past_key_values to match the `top_k` candidates
            past = model_kwargs["past_key_values"]
            # If it is a static cache, modify it in-place layer after layer to save memory
            if isinstance(past, DynamicCache) or (
                isinstance(past, EncoderDecoderCache)
                and isinstance(past.self_attention_cache, DynamicCache)
            ):
                past.batch_repeat_interleave(top_k)
            else:
                new_key_values = []
                for layer in past:
                    items = []
                    # item is either the key or the value matrix
                    for item in layer:
                        items.append(item.repeat_interleave(top_k, dim=0))
                    new_key_values.append(tuple(items))

                past = tuple(new_key_values)

            model_kwargs["past_key_values"] = past

        if sequential:
            all_outputs = []
            for i in range(top_k):
                # compute the candidate tokens by the language model and collect their hidden_states
                next_model_inputs = model.prepare_inputs_for_generation(
                    top_k_ids[:, i].view(-1, 1), **model_kwargs
                )

                outputs = model(
                    **next_model_inputs,
                    return_dict=True,
                    output_hidden_states=True,
                    output_attentions=output_attentions,
                )
                if isinstance(outputs["past_key_values"], DynamicCache) or (
                    isinstance(outputs["past_key_values"], EncoderDecoderCache)
                    and isinstance(
                        outputs["past_key_values"].self_attention_cache, DynamicCache
                    )
                ):
                    # Remove past K-V from output since we don't need to stack later
                    outputs["past_key_values"] = None
                    # Remove last token from past K-V since we don't want to append it at this point
                    model_kwargs["past_key_values"].crop(-1)
                else:
                    raise ValueError(
                        f"Unsupported cache type: {type(outputs['past_key_values'])}. Contrastive search requires "
                        "dynamic cache, so set `cache_implementation='dynamic'` in the generation config."
                    )

                all_outputs.append(outputs)
            outputs = stack_model_outputs(all_outputs, model.config.get_text_config())

        else:
            # compute the candidate tokens by the language model and collect their hidden_states
            # assembles top_k_ids into batch of size k
            next_model_inputs = model.prepare_inputs_for_generation(
                top_k_ids.view(-1, 1), **model_kwargs
            )

            outputs = model(
                **next_model_inputs,
                return_dict=True,
                output_hidden_states=True,
                output_attentions=output_attentions,
            )

        # This is essential to avoid having a last reference to the big past K-V and double the necessary memory
        # in the next loop
        del next_model_inputs

        # name is different for encoder-decoder and decoder-only models
        if model.config.is_encoder_decoder:
            next_hidden = outputs.decoder_hidden_states[-1]
            full_hidden_states = outputs.decoder_hidden_states
        else:
            next_hidden = outputs.hidden_states[-1]
            full_hidden_states = outputs.hidden_states

        # .float() is needed to retain precision for later logits manipulations
        logits = outputs.logits[:, -1, :].float()
        context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0)

        # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
        # model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't
        # introduce (noticeable) slowdowns on single-device runs.
        selected_idx = _ranking_fast(
            context_hidden,
            next_hidden,
            top_k_probs,
            cosine_matrix_mask,
            penalty_alpha,
            top_k,
        )
        cosine_matrix_mask = torch.cat(
            [
                cosine_matrix_mask,
                cosine_matrix_mask.new_ones((cosine_matrix_mask.shape[0], 1)),
            ],
            dim=-1,
        )
        selected_idx = selected_idx.to("cpu")

        # This will be used instead of the previous inneficient torch.stack(torch.split())
        augmented_idx = torch.tensor(
            [x + i * top_k for i, x in enumerate(selected_idx)]
        )

        # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
        # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
        # (model confidence minus degeneration penalty); (6) decoder hidden_states
        next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
        next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
        next_hidden = next_hidden[range(batch_size), selected_idx, :]
        last_hidden_states = torch.cat(
            [last_hidden_states, next_hidden.unsqueeze(1)], dim=1
        )

        next_decoder_hidden_states = ()
        for layer in full_hidden_states:
            layer = torch.stack(torch.split(layer, top_k))[
                range(batch_size), selected_idx, :
            ]
            next_decoder_hidden_states += (layer,)

        # generate past_key_values cache of only the selected token
        if sequential:
            next_model_input = model.prepare_inputs_for_generation(
                top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs
            )

            selected_outputs = model(
                **next_model_input,
                return_dict=True,
                output_hidden_states=False,
                output_attentions=False,
            )
            next_past_key_values = selected_outputs["past_key_values"]

        else:
            next_past_key_values = None
            for possible_cache_name in ALL_CACHE_NAMES:
                next_past_key_values = next_past_key_values or getattr(
                    outputs, possible_cache_name, None
                )
            # Do it in-place layer per layer to save memory
            if isinstance(next_past_key_values, DynamicCache) or (
                isinstance(next_past_key_values, EncoderDecoderCache)
                and isinstance(next_past_key_values.self_attention_cache, DynamicCache)
            ):
                next_past_key_values.batch_select_indices(augmented_idx)
            else:
                new_key_values = []
                for layer in next_past_key_values:
                    items = []
                    # item is either the key or the value matrix
                    for item in layer:
                        items.append(item[augmented_idx, ...])
                    new_key_values.append(tuple(items))

                next_past_key_values = tuple(new_key_values)

        logit_for_next_step = torch.stack(torch.split(logits, top_k))[
            range(batch_size), selected_idx, :
        ]
        logit_for_next_step = logit_for_next_step.to(input_ids.device)

        # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
        if model.config.is_encoder_decoder:
            next_step_cross_attentions = ()
            next_step_decoder_attentions = ()
            if output_attentions:
                for layer in outputs.cross_attentions:
                    layer = torch.stack(torch.split(layer, top_k, dim=0))[
                        range(batch_size), selected_idx, ...
                    ]
                    next_step_cross_attentions += (layer,)
                for layer in outputs.decoder_attentions:
                    layer = torch.stack(torch.split(layer, top_k, dim=0))[
                        range(batch_size), selected_idx, ...
                    ]
                    next_step_decoder_attentions += (layer,)
            outputs = Seq2SeqLMOutput(
                past_key_values=next_past_key_values,
                decoder_hidden_states=next_decoder_hidden_states,
                decoder_attentions=next_step_decoder_attentions or None,
                cross_attentions=next_step_cross_attentions or None,
            )
        else:
            next_step_attentions = ()
            if output_attentions:
                for layer in outputs.attentions:
                    layer = torch.stack(torch.split(layer, top_k, dim=0))[
                        range(batch_size), selected_idx, ...
                    ]
                    next_step_attentions += (layer,)
            outputs = CausalLMOutputWithPast(
                past_key_values=next_past_key_values,
                hidden_states=next_decoder_hidden_states,
                attentions=next_step_attentions or None,
            )
        # contrastive_search main logic end

        # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
        model_kwargs = model._update_model_kwargs_for_generation(
            outputs,
            model_kwargs,
            is_encoder_decoder=model.config.is_encoder_decoder,
        )
        if synced_gpus and this_peer_finished:
            continue

        # finished sentences should have their next token be a padding token
        if has_eos_stopping_criteria:
            next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
                1 - unfinished_sequences
            )

        # update generated ids, model inputs, and length for next step
        input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
        if streamer is not None:
            streamer.put(next_tokens.cpu())

        # stop when each sentence is finished
        unfinished_sequences = unfinished_sequences & ~stopping_criteria(
            input_ids, scores
        )
        this_peer_finished = unfinished_sequences.max() == 0

    if streamer is not None:
        streamer.end()

    if return_dict_in_generate:
        # Contrastive search works by forward looking at the next token, so we need to exclude it from
        # `past_key_values` to be consistent with the other decoding methods
        if model_kwargs.get("past_key_values") is not None:
            if isinstance(model_kwargs["past_key_values"], DynamicCache) or (
                isinstance(model_kwargs["past_key_values"], EncoderDecoderCache)
                and isinstance(
                    model_kwargs["past_key_values"].self_attention_cache, DynamicCache
                )
            ):
                model_kwargs["past_key_values"].crop(-1)
            else:
                past_key_values = []
                for layer in model_kwargs["past_key_values"]:
                    layer_past_key_values = []
                    for item in layer:
                        layer_past_key_values.append(item[..., :-1, :])
                    past_key_values.append(tuple(layer_past_key_values))
                model_kwargs["past_key_values"] = tuple(past_key_values)

        if model.config.is_encoder_decoder:
            return GenerateEncoderDecoderOutput(
                sequences=input_ids,
                scores=scores,
                logits=raw_logits,
                encoder_attentions=encoder_attentions,
                encoder_hidden_states=encoder_hidden_states,
                decoder_attentions=decoder_attentions,
                cross_attentions=cross_attentions,
                decoder_hidden_states=decoder_hidden_states,
                past_key_values=model_kwargs.get("past_key_values"),
            )
        else:
            return GenerateDecoderOnlyOutput(
                sequences=input_ids,
                scores=scores,
                logits=raw_logits,
                attentions=decoder_attentions,
                hidden_states=decoder_hidden_states,
                past_key_values=model_kwargs.get("past_key_values"),
            )
    else:
        return input_ids


def generate(model, *args, **kwargs):
    """Custom generate function for Contrastive Search decoding.
    Args:
        model (`PreTrainedModel`):
            The model to generate from.
        penalty_alpha (`float`): The alpha value for the degeneration penalty.
        top_k (`int`): The number of candidates to consider at each step.
    """
    cache_implementation = kwargs.pop("cache_implementation", "dynamic_full")
    if cache_implementation != "dynamic_full" and (
        "sliding_attention"
        in getattr(model.config.get_text_config(), "layer_types", [])
        or getattr(model.config.get_text_config(), "sliding_window", 0) > 0
    ):
        logger.warning_once(
            "Contrastive search with sliding window attention requires `cache_implementation='dynamic_full'`. "
            "Using other cache types may break rollback and cause incorrect results."
        )

    generation_outputs = GenerationMixin.generate(
        model,
        *args,
        custom_generate=_contrastive_search,
        cache_implementation=cache_implementation,
        **kwargs,
    )
    return generation_outputs