File size: 17,666 Bytes
8d28a20
 
 
005232e
8d28a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966b7cb
8d28a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966b7cb
8d28a20
 
 
 
 
 
 
 
966b7cb
8d28a20
 
966b7cb
8d28a20
 
966b7cb
8d28a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966b7cb
8d28a20
 
 
 
966b7cb
8d28a20
 
 
 
966b7cb
8d28a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966b7cb
8d28a20
 
 
966b7cb
8d28a20
966b7cb
8d28a20
 
966b7cb
8d28a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966b7cb
8d28a20
 
966b7cb
8d28a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966b7cb
8d28a20
966b7cb
8d28a20
 
 
 
 
966b7cb
8d28a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
005232e
 
 
8d28a20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from typing import Union
import torch
from transformers import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
from transformers.generation.utils import GenerationMixin, GenerateNonBeamOutput, GenerateDecoderOnlyOutput
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import logging

logger = logging.getLogger(__name__)


def _relative_top_filter(
    scores: torch.FloatTensor,
    baseline_scores: torch.FloatTensor,
    relative_top: float = 0.1,
    filter_value: float = -float("Inf"),
    base_filter_value=-1e-3,
    min_tokens_to_keep: int = 1,
) -> tuple[torch.FloatTensor, torch.FloatTensor]:
    """
    Reference: https://github.com/XiangLi1999/ContrastiveDecoding/blob/170e9142e92159c1237d731e240f5eb14aabf428/transformers/src/transformers/generation_logits_process.py#L235
    Apply filtering to only keep tokens with a probability above a certain threshold. The threshold is defined as `relative_top` * max probability in the distribution.
    """
    scores_normalized = scores.log_softmax(dim=-1)
    baseline_scores_normalized = baseline_scores.log_softmax(dim=-1)
    sorted_logits, sorted_indices = torch.sort(scores_normalized, descending=True)
    min_thresh = sorted_logits[..., min_tokens_to_keep - 1]
    probs_max = torch.max(scores_normalized, dim=-1).values
    probs_thresh = probs_max + np.log(relative_top)
    probs_thresh = torch.min(min_thresh, probs_thresh)
    probs_thresh = probs_thresh.unsqueeze(-1)
    baseline_scores_normalized[scores_normalized < probs_thresh] = base_filter_value
    scores_normalized[scores_normalized < probs_thresh] = filter_value
    return scores_normalized, baseline_scores_normalized



def _dola_select_contrast(
    candidate_premature_layers: list[int],
    candidate_premature_logits: dict[int, torch.FloatTensor],
    final_logits: torch.FloatTensor,
) -> torch.FloatTensor:
    if len(candidate_premature_layers) == 1:
        base_logits = candidate_premature_logits[candidate_premature_layers[0]]
        final_logits, base_logits = _relative_top_filter(final_logits, base_logits)
        logits = final_logits - base_logits
        return logits

    # 1. Stacking all premature_layers into a new dimension
    stacked_premature_layers = torch.stack([candidate_premature_logits[i] for i in candidate_premature_layers], dim=0)

    # 2. Calculate the softmax values for mature_layer and all premature_layers
    # shape: (batch_size, vocab_size)
    softmax_mature_layer = F.softmax(final_logits, dim=-1)
    # shape: (num_premature_layers, batch_size, vocab_size)
    softmax_premature_layers = F.softmax(stacked_premature_layers, dim=-1)

    # 3. Calculate the average distribution
    # shape: (num_premature_layers, batch_size, vocab_size)
    avg_dist = 0.5 * (softmax_mature_layer[None, :, :] + softmax_premature_layers)

    # 4. Calculate log-softmax for the KL divergence
    # shape: (batch_size, vocab_size)
    log_softmax_mature_layer = F.log_softmax(final_logits, dim=-1)
    # shape: (num_premature_layers, batch_size, vocab_size)
    log_softmax_premature_layers = F.log_softmax(stacked_premature_layers, dim=-1)

    # 5. Calculate the KL divergences and then the JS divergences
    # shape: (num_premature_layers, batch_size)
    kl1 = F.kl_div(log_softmax_mature_layer[None, :, :], avg_dist, reduction="none").mean(-1)
    # shape: (num_premature_layers, batch_size)
    kl2 = F.kl_div(log_softmax_premature_layers, avg_dist, reduction="none").mean(-1)
    js_divs = 0.5 * (kl1 + kl2)  # shape: (num_premature_layers, batch_size)

    # 6. Reduce the batchmean
    js_divs = js_divs.mean(-1)  # shape: (num_premature_layers,)
    premature_layer = candidate_premature_layers[int(js_divs.argmax().item())]

    base_logits = candidate_premature_logits[premature_layer]
    final_logits, base_logits = _relative_top_filter(final_logits, base_logits)
    logits = final_logits - base_logits
    return logits

def _dola_decoding(
        model,
        input_ids: torch.LongTensor,
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: "BaseStreamer",
        **model_kwargs,
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **dola decoding** and can be
        used for decoder-only text models.
        The method is based on the paper "DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language
        Models" (https://huggingface.co/papers/2309.03883) in ICLR 2024.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            dola_layers (`Union[str, list[int]]`):
                The candidate layers used in contrasting layers of DoLa. It can be either 1) 'low' or 'high', which
                means the lower part or higher part of the model layers, respectively, or 2) a list of layer indices
                to be used for candidate layers. The 0-th layer is the word embedding layer of the model.
            logits_processor (`LogitsProcessorList`):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
                Whether to continue running the while loop until max_length (needed to avoid deadlocking with
                `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`]
            or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.
        """
        dola_layers: Union[str, list[int]] = generation_config.dola_layers


        # 1. General sanity checks
        # A few arguments are not allowed, especially arguments that control caches.
        assert dola_layers is not None, "dola_layers must be set to use DoLa decoding"

        # DoLa generation needs num_beams == 1
        if getattr(generation_config, "num_beams", 1) != 1:
            raise ValueError("DoLa generation needs num_beams == 1")
        
        if model.config.is_encoder_decoder:
            raise ValueError("DoLa decoding is only available for decoder-only models.")

        if generation_config.repetition_penalty < 1.2:
            logger.warning(
                f"`repetition_penalty` is set to a value of {generation_config.repetition_penalty}, which could induce unwanted repetition. "
                "The recommended value for DoLa decoding is `repetition_penalty>=1.2`.",
            )

        if getattr(model, "_is_stateful", False):
            # DoLa decoding was not designed for stateful models, and would require some changes
            raise ValueError(
                f"DoLa decoding is not supported with stateful models, such as {model.__class__.__name__}"
            )

        if model.config.is_encoder_decoder:
            raise ValueError("DoLa decoding is only available for decoder-only models.")
        
        # init values
        pad_token_id = generation_config._pad_token_tensor
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
        do_sample = generation_config.do_sample

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        raw_logits = () if (return_dict_in_generate and output_logits) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # keep track of which sequences are already finished
        batch_size, cur_length = input_ids.shape[:2]
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
        model_kwargs = model._get_initial_cache_position(cur_length, input_ids.device, model_kwargs)

        this_peer_finished = False

        # prepare layers for DoLa decoding
        final_layer = model.config.get_text_config().num_hidden_layers
        # if the model has tied word embeddings, we skip the word embeddings (0-th) layer and start from the 2nd layer,
        # as the early exit from word embeddings will become identity function
        # if the model is really shallow (<=2 layers), we use the 1st layer if it's not the final layer and the 0-th
        # layer otherwise. Notice that DoLa does not help shallow models much.
        if not model.config.tie_word_embeddings:
            start_layer = 0
        elif final_layer > 2:
            start_layer = 2
        elif final_layer == 2:
            start_layer = 1
        else:
            start_layer = 0

        # For `N`-layer models with `N <= 40` layers, the layers of `range(0, N // 2, 2)` and `range(N // 2, N, 2)`
        # are used for `'low'` and `'high'` layers, respectively.
        # For models with `N > 40` layers, the layers of `range(0, 20, 2)` and `range(N - 20, N, 2)` are used for
        # `'low'` and `'high'` layers, respectively.
        if isinstance(dola_layers, str) and dola_layers == "low":
            if start_layer == final_layer // 2:
                candidate_premature_layers = [start_layer]
            else:
                candidate_premature_layers = (
                    list(range(start_layer, final_layer // 2, 2))
                    if final_layer <= 40
                    else list(range(start_layer, 20, 2))
                )
        elif isinstance(dola_layers, str) and dola_layers == "high":
            candidate_premature_layers = (
                list(range(final_layer // 2, final_layer, 2))
                if final_layer <= 40
                else list(range(final_layer - 20, final_layer, 2))
            )
        # Set the `dola_layers` to a list of integers for layer indices to contrast manually specified layers.
        elif isinstance(dola_layers, list):
            candidate_premature_layers = [i for i in dola_layers if i < final_layer]
        else:
            raise ValueError("dola_layers must be either 'low', 'high' or a list of integers.")

        lm_head = model.get_output_embeddings()
        if lm_head is None:
            raise ValueError("DoLa is not supported for models that don't have output embeddings.")

        while model._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
            # prepare model inputs
            model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = model(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=True,
            )

            # .float() is needed to retain precision for later logits manipulations
            final_layer_next_token_logits = outputs.logits[:, -1, :].detach().to(copy=True, dtype=torch.float32)
            final_logits = outputs.logits[:, -1, :].float()
            candidate_premature_logits = {}
            for candidate_premature_layer in candidate_premature_layers:
                candidate_premature_logits[candidate_premature_layer] = lm_head(
                    outputs.hidden_states[candidate_premature_layer][:, -1, :]
                ).to(final_logits.device)

            # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
            model_kwargs = model._update_model_kwargs_for_generation(
                outputs,
                model_kwargs,
                is_encoder_decoder=model.config.is_encoder_decoder,
            )
            if synced_gpus and this_peer_finished:
                continue

            next_token_logits = _dola_select_contrast(
                candidate_premature_layers, candidate_premature_logits, final_logits
            )
            next_token_logits = next_token_logits.to(input_ids.device)
            # pre-process distribution
            next_token_scores = logits_processor(input_ids, next_token_logits)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
                if output_logits:
                    raw_logits += (final_layer_next_token_logits,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if model.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if model.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if model.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            if do_sample:  # sample
                probs = nn.functional.softmax(next_token_scores, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
            else:  # argmax
                next_tokens = torch.argmax(next_token_scores, dim=-1)

            # finished sentences should have their next token be a padding token
            if has_eos_stopping_criteria:
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
            if streamer is not None:
                streamer.put(next_tokens.cpu())

            # stop when each sentence is finished
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
            this_peer_finished = unfinished_sequences.max() == 0

        if streamer is not None:
            streamer.end()

        if return_dict_in_generate:
            return GenerateDecoderOnlyOutput(
                sequences=input_ids,
                scores=scores,
                logits=raw_logits,
                attentions=decoder_attentions,
                hidden_states=decoder_hidden_states,
                past_key_values=model_kwargs.get("past_key_values"),
            )
        else:
            return input_ids

def generate(model, *args, **kwargs):
    """Custom generate function for DoLa decoding.
    Args:
        model (`PreTrainedModel`):
            The model to generate from.
        dola_layers (`Union[str, list[int]]`): The layers to use for DoLa decoding. If `None`, DoLa decoding is not used. If a string, it must
            be one of "low" or "high", which means using the lower part or higher part of the model layers, respectively.
            "low" means the first half of the layers up to the first 20 layers, and "high" means the last half of the
            layers up to the last 20 layers.
            If a list of integers, it must contain the indices of the layers to use for candidate premature layers in DoLa.
            The 0-th layer is the word embedding layer of the model. Set to `'low'` to improve long-answer reasoning tasks,
            `'high'` to improve short-answer tasks. Check the [documentation](https://huggingface.co/transformers-community/dola)
            or [the paper](https://huggingface.co/papers/2309.03883) for more details.
    """
    generation_outputs = GenerationMixin.generate(
        model, *args, custom_generate=_dola_decoding, **kwargs
    )
    return generation_outputs