File size: 23,874 Bytes
396a9d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from collections import UserDict
from typing import Optional, Union
import torch
from transformers.utils import add_start_docstrings
PROCESS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
next_scores (`torch.FloatTensor` of shape `(batch_size, 2 * num_beams)`):
Current scores of the top `2 * num_beams` non-finished beam hypotheses.
next_tokens (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
`input_ids` of the tokens corresponding to the top `2 * num_beams` non-finished beam hypotheses.
next_indices (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
Beam indices indicating to which beam hypothesis the `next_tokens` correspond.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`Union[int, list[int]]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
beam_indices (`torch.LongTensor`, *optional*):
Beam indices indicating to which beam hypothesis each token correspond.
group_index (`int`, *optional*):
The index of the group of beams. Used with [`~PreTrainedModel.group_beam_search`].
Return:
`UserDict`: A dictionary composed of the fields as defined above:
- **next_beam_scores** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Updated scores of all
non-finished beams.
- **next_beam_tokens** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Next tokens to be added
to the non-finished beam_hypotheses.
- **next_beam_indices** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Beam indices
indicating to which beam the next tokens shall be added.
"""
FINALIZE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
final_beam_scores (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
The final scores of all non-finished beams.
final_beam_tokens (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
The last tokens to be added to the non-finished beam_hypotheses.
final_beam_indices (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
The beam indices indicating to which beam the `final_beam_tokens` shall be added.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`Union[int, list[int]]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
Return:
`torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences.
The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early
due to the `eos_token_id`.
"""
class BeamHypotheses:
def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool, max_length: Optional[int] = None):
"""
Initialize n-best list of hypotheses.
"""
self.length_penalty = length_penalty
self.early_stopping = early_stopping
self.max_length = max_length
self.num_beams = num_beams
self.beams = []
self.worst_score = 1e9
if not isinstance(self.early_stopping, bool) and self.max_length is None:
raise ValueError(
"When `do_early_stopping` is set to a string, `max_length` must be defined. Ensure it is passed to the"
" BeamScorer class instance at initialization time."
)
def __len__(self):
"""
Number of hypotheses in the list.
"""
return len(self.beams)
def add(
self,
hyp: torch.LongTensor,
sum_logprobs: float,
beam_indices: Optional[torch.LongTensor] = None,
generated_len: Optional[int] = None,
):
"""
Add a new hypothesis to the list.
"""
if generated_len is not None:
score = sum_logprobs / (generated_len**self.length_penalty)
# This 'else' case exists for retrocompatibility
else:
score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty)
if len(self) < self.num_beams or score > self.worst_score:
self.beams.append((score, hyp, beam_indices))
if len(self) > self.num_beams:
sorted_next_scores = sorted([(s, idx) for idx, (s, _, _) in enumerate(self.beams)])
del self.beams[sorted_next_scores[0][1]]
self.worst_score = sorted_next_scores[1][0]
else:
self.worst_score = min(score, self.worst_score)
def is_done(self, best_sum_logprobs: float, cur_len: int, decoder_prompt_len: Optional[int] = 0) -> bool:
"""
If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst
one in the heap, then we are done with this sentence.
"""
if len(self) < self.num_beams:
return False
# `True`: stop as soon as at least `num_beams` hypotheses are finished
if self.early_stopping is True:
return True
# `False`: heuristic -- compute best possible score from `cur_len`, even though it is not entirely accurate
# when `length_penalty` is positive. See the discussion below for more details.
# https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
elif self.early_stopping is False:
highest_attainable_score = best_sum_logprobs / (cur_len - decoder_prompt_len) ** self.length_penalty
ret = self.worst_score >= highest_attainable_score
return ret
# `"never"`: compute the best possible score, depending on the signal of `length_penalty`
else:
# `length_penalty` > 0.0 -> max denominator is obtaned from `max_length`, not from `cur_len` -> min
# abs(`highest_attainable_score`) is obtained -> `highest_attainable_score` is negative, hence we obtain
# its max this way
if self.length_penalty > 0.0:
if self.max_length <= decoder_prompt_len:
raise ValueError("max_length is not larger than decoder prompt length")
highest_attainable_score = (
best_sum_logprobs / (self.max_length - decoder_prompt_len) ** self.length_penalty
)
# the opposite logic applies here (max `highest_attainable_score` from `cur_len`)
else:
highest_attainable_score = best_sum_logprobs / (cur_len - decoder_prompt_len) ** self.length_penalty
ret = self.worst_score >= highest_attainable_score
return ret
class BeamScorer(ABC):
"""
Abstract base class for all beam scorers that are used for [`~PreTrainedModel.beam_search`] and
[`~PreTrainedModel.beam_sample`].
"""
@abstractmethod
@add_start_docstrings(PROCESS_INPUTS_DOCSTRING)
def process(
self,
input_ids: torch.LongTensor,
next_scores: torch.FloatTensor,
next_tokens: torch.LongTensor,
next_indices: torch.LongTensor,
**kwargs,
) -> tuple[torch.Tensor]:
raise NotImplementedError("This is an abstract method.")
@abstractmethod
@add_start_docstrings(FINALIZE_INPUTS_DOCSTRING)
def finalize(
self,
input_ids: torch.LongTensor,
next_scores: torch.FloatTensor,
next_tokens: torch.LongTensor,
next_indices: torch.LongTensor,
max_length: int,
**kwargs,
) -> torch.LongTensor:
raise NotImplementedError("This is an abstract method.")
class BeamSearchScorer(BeamScorer):
r"""
[`BeamScorer`] implementing standard beam search decoding.
Adapted in part from [Facebook's XLM beam search
code](https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529).
Reference for the diverse beam search algorithm and implementation [Ashwin Kalyan's DBS
implementation](https://github.com/ashwinkalyan/dbs/blob/master/dbs/beam_utils.lua)
Args:
batch_size (`int`):
Batch Size of `input_ids` for which standard beam search decoding is run in parallel.
num_beams (`int`):
Number of beams for beam search.
device (`torch.device`):
Defines the device type (*e.g.*, `"cpu"` or `"cuda"`) on which this instance of `BeamSearchScorer` will be
allocated.
length_penalty (`float`, *optional*, defaults to 1.0):
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
`length_penalty` < 0.0 encourages shorter sequences.
do_early_stopping (`bool` or `str`, *optional*, defaults to `False`):
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
`True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an
heuristic is applied and the generation stops when is it very unlikely to find better candidates;
`"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical
beam search algorithm).
num_beam_hyps_to_keep (`int`, *optional*, defaults to 1):
The number of beam hypotheses that shall be returned upon calling
[`~transformers.BeamSearchScorer.finalize`].
num_beam_groups (`int`, *optional*, defaults to 1):
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
See [this paper](https://huggingface.co/papers/1610.02424) for more details.
max_length (`int`, *optional*):
The maximum length of the sequence to be generated.
"""
def __init__(
self,
batch_size: int,
num_beams: int,
device: torch.device,
length_penalty: Optional[float] = 1.0,
do_early_stopping: Optional[Union[bool, str]] = False,
num_beam_hyps_to_keep: Optional[int] = 1,
num_beam_groups: Optional[int] = 1,
max_length: Optional[int] = None,
):
self.num_beams = num_beams
self.device = device
self.length_penalty = length_penalty
self.do_early_stopping = do_early_stopping
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
self.num_beam_groups = num_beam_groups
self.group_size = self.num_beams // self.num_beam_groups
self._is_init = False
# self._beam_hyps[i*self.num_beam_groups+j] is the beam_hyps of the j-th group in the i-th mini-batch.
# If group_beam_search is not used, the list consists of `batch_size` beam_hyps.
self._beam_hyps = [
BeamHypotheses(
num_beams=self.group_size,
length_penalty=self.length_penalty,
early_stopping=self.do_early_stopping,
max_length=max_length,
)
for _ in range(batch_size * self.num_beam_groups)
]
# self._done[i*self.num_beam_groups+j] indicates whether the generation of the beam_hyps of the j-th group
# in the i-th mini-batch is complete.
self._done = torch.tensor(
[False for _ in range(batch_size * self.num_beam_groups)], dtype=torch.bool, device=self.device
)
if not isinstance(num_beams, int) or num_beams <= 1:
raise ValueError(
f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
" one should make use of `greedy_search` instead."
)
if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
raise ValueError(
"`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
)
@property
def is_done(self) -> bool:
return self._done.all()
def process(
self,
input_ids: torch.LongTensor,
next_scores: torch.FloatTensor,
next_tokens: torch.LongTensor,
next_indices: torch.LongTensor,
pad_token_id: Optional[Union[int, torch.Tensor]] = None,
eos_token_id: Optional[Union[int, list[int], torch.Tensor]] = None,
beam_indices: Optional[torch.LongTensor] = None,
group_index: Optional[int] = 0,
decoder_prompt_len: Optional[int] = 0,
) -> dict[str, torch.Tensor]:
# add up to the length which the next_scores is calculated on (including decoder prompt)
cur_len = input_ids.shape[-1] + 1
batch_size = len(self._beam_hyps) // self.num_beam_groups
if batch_size != (input_ids.shape[0] // self.group_size):
if self.num_beam_groups > 1:
raise ValueError(
f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam "
f"size of {self.group_size} is expected by the beam scorer."
)
else:
raise ValueError(
f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of "
f"{self.group_size} is expected by the beam scorer."
)
device = input_ids.device
next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device)
next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)
if eos_token_id is not None and not isinstance(eos_token_id, torch.Tensor):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id)
for batch_idx in range(batch_size):
batch_group_idx = batch_idx * self.num_beam_groups + group_index
if self._done[batch_group_idx]:
if self.num_beams < len(self._beam_hyps[batch_group_idx]):
raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated")
if eos_token_id is None or pad_token_id is None:
raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined")
# pad the batch
next_beam_scores[batch_idx, :] = 0
next_beam_tokens[batch_idx, :] = pad_token_id
next_beam_indices[batch_idx, :] = 0
continue
# next tokens for this sentence
beam_idx = 0
for beam_token_rank, (next_token, next_score, next_index) in enumerate(
zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
):
batch_beam_idx = batch_idx * self.group_size + next_index
# add to generated hypotheses if end of sentence
if (eos_token_id is not None) and (next_token.item() in eos_token_id):
# if beam_token does not belong to top num_beams tokens, it should not be added
is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
if is_beam_token_worse_than_top_num_beams:
continue
if beam_indices is not None:
beam_index = beam_indices[batch_beam_idx]
beam_index = beam_index + (batch_beam_idx,)
else:
beam_index = None
self._beam_hyps[batch_group_idx].add(
input_ids[batch_beam_idx].clone(),
next_score.item(),
beam_indices=beam_index,
generated_len=cur_len - decoder_prompt_len,
)
else:
# add next predicted token since it is not eos_token
next_beam_scores[batch_idx, beam_idx] = next_score
next_beam_tokens[batch_idx, beam_idx] = next_token
next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
beam_idx += 1
# once the beam for next step is full, don't add more tokens to it.
if beam_idx == self.group_size:
break
if beam_idx < self.group_size:
raise ValueError(
f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
)
# Check if we are done so that we can save a pad step if all(done)
self._done[batch_group_idx] = self._done[batch_group_idx] or self._beam_hyps[batch_group_idx].is_done(
next_scores[batch_idx].max().item(), cur_len, decoder_prompt_len
)
return UserDict(
{
"next_beam_scores": next_beam_scores.view(-1),
"next_beam_tokens": next_beam_tokens.view(-1),
"next_beam_indices": next_beam_indices.view(-1),
}
)
def finalize(
self,
input_ids: torch.LongTensor,
final_beam_scores: torch.FloatTensor,
final_beam_tokens: torch.LongTensor,
final_beam_indices: torch.LongTensor,
max_length: int,
pad_token_id: Optional[Union[int, torch.Tensor]] = None,
eos_token_id: Optional[Union[int, list[int], torch.Tensor]] = None,
beam_indices: Optional[torch.LongTensor] = None,
decoder_prompt_len: Optional[int] = 0,
) -> tuple[torch.LongTensor]:
batch_size = len(self._beam_hyps) // self.num_beam_groups
if eos_token_id is not None and not isinstance(eos_token_id, torch.Tensor):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id)
# finalize all open beam hypotheses and add to generated hypotheses
for batch_group_idx, beam_hyp in enumerate(self._beam_hyps):
if self._done[batch_group_idx]:
continue
# all open beam hypotheses are added to the beam hypothesis
# beam hypothesis class automatically keeps the best beams
for index_per_group in range(self.group_size):
batch_beam_idx = batch_group_idx * self.group_size + index_per_group
final_score = final_beam_scores[batch_beam_idx].item()
final_tokens = input_ids[batch_beam_idx]
beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None
generated_len = final_tokens.shape[-1] - decoder_prompt_len
beam_hyp.add(final_tokens, final_score, beam_indices=beam_index, generated_len=generated_len)
# select the best hypotheses
sent_lengths = input_ids.new(batch_size * self.num_beam_hyps_to_keep)
best = []
best_indices = []
best_scores = torch.zeros(batch_size * self.num_beam_hyps_to_keep, device=self.device, dtype=torch.float32)
# retrieve best hypotheses
for i in range(batch_size):
beam_hyps_in_batch = self._beam_hyps[i * self.num_beam_groups : (i + 1) * self.num_beam_groups]
candidate_beams = [beam for beam_hyp in beam_hyps_in_batch for beam in beam_hyp.beams]
sorted_hyps = sorted(candidate_beams, key=lambda x: x[0])
for j in range(self.num_beam_hyps_to_keep):
best_hyp_tuple = sorted_hyps.pop()
best_score = best_hyp_tuple[0]
best_hyp = best_hyp_tuple[1]
best_index = best_hyp_tuple[2]
sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)
# append hyp to lists
best.append(best_hyp)
# append indices to list
best_indices.append(best_index)
best_scores[i * self.num_beam_hyps_to_keep + j] = best_score
# prepare for adding eos
sent_lengths_max = sent_lengths.max().item() + 1
sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max
decoded: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
if len(best_indices) > 0 and best_indices[0] is not None:
indices: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
else:
indices = None
# shorter batches are padded if needed
if sent_lengths.min().item() != sent_lengths.max().item():
if pad_token_id is None:
raise ValueError("`pad_token_id` has to be defined")
decoded.fill_(pad_token_id)
if indices is not None:
indices.fill_(-1)
# fill with hypotheses and eos_token_id if the latter fits in
for i, (hypo, best_idx) in enumerate(zip(best, best_indices)):
decoded[i, : sent_lengths[i]] = hypo
if indices is not None:
indices[i, : len(best_idx)] = torch.tensor(best_idx)
if sent_lengths[i] < sent_max_len:
# inserting only the first eos_token_id
decoded[i, sent_lengths[i]] = eos_token_id[0]
return UserDict(
{
"sequences": decoded,
"sequence_scores": best_scores,
"beam_indices": indices,
}
)
|