File size: 2,135 Bytes
0eccecd
 
 
 
 
 
 
 
 
032115c
0eccecd
 
 
4c2a8a1
 
 
 
0eccecd
4c2a8a1
 
 
decf37e
4c2a8a1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
license: apache-2.0
language:
- en
- ko
- ja
---
# Intermediate Checkpoints Release

For the first time among Korean-targeted LLMs, we’re releasing **intermediate checkpoints** from the Tri family—**0.5B**, **1.9B**, and **7B**—to advance research on LLM training dynamics. We release checkpoints at regular step intervals— **≈20B tokens (0.5B), ≈40B (1.9B), and ≈160B (7B & 70B)** —enabling consistent analysis of training dynamics. Each step’s release is distinguished by its **branch name**.
We’re also sharing the **0.5B** and **1.9B** runs—originally produced for system bring-up but now available as valuable artifacts for analyzing training behavior at smaller scales.

You can browse all intermediate checkpoints here:  
- **Tri-0.5B** → [https://huggingface.co/trillionlabs/0.5B-Intermediate-Checkpoints](https://huggingface.co/trillionlabs/0.5B-Intermediate-Checkpoints)  
- **Tri-1.9B** → [https://huggingface.co/trillionlabs/1.9B-Intermediate-Checkpoints](https://huggingface.co/trillionlabs/1.9B-Intermediate-Checkpoints)  
- **Tri-7B** → [https://huggingface.co/trillionlabs/Tri-7B-Intermediate-Checkpoints](https://huggingface.co/trillionlabs/Tri-7B-Intermediate-Checkpoints) 
- **Tri-70B(SFT Preview)** → [https://huggingface.co/trillionlabs/Tri-70B-Intermediate-Checkpoints](https://huggingface.co/trillionlabs/Tri-70B-Intermediate-Checkpoints)
 
Feel free to check out the full Tri-series collection here: 
- https://huggingface.co/collections/trillionlabs/tri-series-687fa9ff7eb23e8ba847ef93

Dive into the full details—including training configuration and loss curves —on our [blog](https://trillionlabs.co/research/tri-series-intermediate-checkpoints-release).



# Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

INTERMEDIATE_STEP = "0000020000"
model = AutoModelForCausalLM.from_pretrained('trillionlabs/Tri-70B-Intermediate-Checkpoints', revision=INTERMEDIATE_STEP, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('trillionlabs/Tri-70B-Intermediate-Checkpoints', revision=INTERMEDIATE_STEP, trust_remote_code=True)

...
```