File size: 16,245 Bytes
6597245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

================================================================================
  🧪 ADVANCED LIMITS TESTING: qwen25-deposium-1024d
================================================================================

🔄 Loading model...
✅ Model loaded!


================================================================================
  🌍 PART 1: Cross-Lingual Instruction-Awareness
================================================================================

────────────────────────────────────────────────────────────────────────────────
  Test 1.1: Question FR → Documents EN
────────────────────────────────────────────────────────────────────────────────

Can the model understand FR 'Explique' → EN 'explanation tutorial'?

📝 Query: "Explique comment fonctionnent les réseaux de neurones"

📄 Documents:
  1. ⚪ [0.741] Comment installer TensorFlow sur Ubuntu
  2. ❌ [0.674] Neural networks explanation tutorial and comprehensive guide
  3. ⚪ [0.671] Neural network architecture overview and history

❌ FAIL: Cross-lingual instruction matching
   Score difference: -0.067

────────────────────────────────────────────────────────────────────────────────
  Test 1.2: Question EN → Documents FR
────────────────────────────────────────────────────────────────────────────────

Can the model understand EN 'Find articles' → FR 'Articles ... publications'?

📝 Query: "Find articles about climate change"

📄 Documents:
  1. ⚪ [0.950] Climate change scientific research overview
  2. ❌ [0.737] Articles sur le changement climatique et publications scientifiques
  3. ⚪ [0.646] Le changement climatique est un problème majeur

❌ FAIL: Cross-lingual instruction matching
   Score difference: -0.213

────────────────────────────────────────────────────────────────────────────────
  Test 1.3: Question FR → Documents Multilingues
────────────────────────────────────────────────────────────────────────────────

FR 'Résume' → EN 'summary' (mixed FR/EN/ES/DE results)

📝 Query: "Résume les avantages de l'apprentissage profond"

📄 Documents:
  1. ⚪ [0.932] L'apprentissage profond est une technique d'IA
  2. ⚪ [0.881] Resumen de las ventajas del aprendizaje profundo
  3. ⚪ [0.838] Zusammenfassung der Vorteile des Deep Learning
  4. ❌ [0.534] Deep learning advantages summary: fast, accurate, scalable

❌ FAIL: Multilingual instruction matching
   Score difference: -0.398

================================================================================
  🤔 PART 2: Difficult and Ambiguous Cases
================================================================================

────────────────────────────────────────────────────────────────────────────────
  Test 2.1: Instructions Négatives
────────────────────────────────────────────────────────────────────────────────

Does the model understand 'Avoid' correctly?

📝 Query: "Avoid using neural networks for this task"

📄 Documents:
  1. ✅ [0.969] Alternative methods to neural networks: decision trees, random forests
  2. ⚪ [0.969] When not to use machine learning algorithms
  3. ⚪ [0.958] Neural network implementation guide and tutorial

✅ PASS: Negative instruction understanding
   Score difference: 0.000

────────────────────────────────────────────────────────────────────────────────
  Test 2.2: Instructions Ambiguës
────────────────────────────────────────────────────────────────────────────────

'Train the model' - Does it default to ML context?

📝 Query: "Train the model"

📄 Documents:
  1. ⚪ [0.918] Train scheduling and railway timetables
  2. ⚪ [0.917] Employee training program for new hires
  3. ❌ [0.905] Machine learning model training procedures and optimization

❌ FAIL: Ambiguity resolution (ML context)
   Score difference: -0.014

────────────────────────────────────────────────────────────────────────────────
  Test 2.3: Instructions Multiples
────────────────────────────────────────────────────────────────────────────────

Multiple intents: Find + Compare + Summarize

📝 Query: "Find, compare and summarize articles about quantum computing"

📄 Documents:
  1. ✅ [0.977] Quantum computing articles comparison summary: top papers analyzed
  2. ⚪ [0.966] Quantum computing summary and overview
  3. ⚪ [0.962] Quantum computing research articles and publications
  4. ⚪ [0.704] GPT-3 vs GPT-4 comparison summary

✅ PASS: Multiple intentions handling
   Score difference: 0.000

────────────────────────────────────────────────────────────────────────────────
  Test 2.4: Nuances Formelles vs Informelles
────────────────────────────────────────────────────────────────────────────────

Formal query → Formal doc:   0.969
Formal query → Informal doc: 0.962
Informal query → Formal doc:   0.883
Informal query → Informal doc: 0.937

✅ PASS: Formality awareness

================================================================================
  ⚠️ PART 3: Edge Cases and Failure Modes
================================================================================

────────────────────────────────────────────────────────────────────────────────
  Test 3.1: Fautes d'Orthographe
────────────────────────────────────────────────────────────────────────────────

Query with typos: 'Explan', 'nural', 'netwrks', 'wrk'

📝 Query: "Explan how nural netwrks wrk"

📄 Documents:
  1. ⚪ [0.601] How to install neural network frameworks
  2. ❌ [0.577] Neural networks explanation tutorial and comprehensive guide
  3. ⚪ [0.565] Neural network architecture technical specifications

❌ FAIL: Typo robustness
   Score difference: -0.023

────────────────────────────────────────────────────────────────────────────────
  Test 3.2: Requête Très Longue et Complexe
────────────────────────────────────────────────────────────────────────────────

Very long query (71 words) with multiple intents

📝 Query: "I need to find comprehensive research articles and academic papers that provide
    a detailed explanation and thorough comparison of different neural network
    architectures, specifically comparing convolutional neural networks, recurrent
    neural networks, and transformer-based models, with a focus on their practical
    applications in natural language processing, computer vision, and time series
    prediction tasks, including performance benchmarks and computational efficiency
    analysis."

📄 Documents:
  1. ⚪ [0.963] Deep learning frameworks installation guide
  2. ⚪ [0.958] Neural networks overview and basic introduction
  3. ❌ [0.898] Neural network architectures comparison: CNN, RNN, Transformers for NLP, vision, time series

❌ FAIL: Long query handling
   Score difference: -0.065

────────────────────────────────────────────────────────────────────────────────
  Test 3.3: Instructions Contradictoires
────────────────────────────────────────────────────────────────────────────────

Contradictory: 'in detail' vs 'keep it brief'

📝 Query: "Explain in detail but keep it brief"

📄 Documents:
  1. ⚪ [0.952] Quick overview and brief summary of the topic
  2. ⚪ [0.941] Comprehensive detailed explanation with examples
  3. ❌ [0.924] Medium-length explanation with key points

❌ FAIL: Contradiction handling (balanced)
   Score difference: -0.029

────────────────────────────────────────────────────────────────────────────────
  Test 3.4: Scripts Non-Latins
────────────────────────────────────────────────────────────────────────────────

Arabic query → English documents

📝 Query: "اشرح كيف تعمل الشبكات العصبية"

📄 Documents:
  1. ⚪ [0.961] شبكات عصبية معمارية عامة
  2. ❌ [-0.445] Neural networks explanation tutorial comprehensive guide
  3. ⚪ [-0.474] Neural network training procedures

Russian query → English documents

📝 Query: "Объясни, как работают нейронные сети"

📄 Documents:
  1. ⚪ [0.982] Нейронные сети архитектура обзор
  2. ❌ [-0.234] Neural networks explanation tutorial comprehensive guide
  3. ⚪ [-0.242] Neural network training procedures

Chinese query → English documents

📝 Query: "解释神经网络如何工作"

📄 Documents:
  1. ⚪ [0.973] 神经网络架构概述
  2. ⚪ [-0.629] Neural network training procedures
  3. ❌ [-0.642] Neural networks explanation tutorial comprehensive guide

⚠️ PARTIAL: Non-Latin script support
   Arabic: ❌ | Russian: ❌ | Chinese: ❌

================================================================================
  📊 PART 4: Performance Degradation Analysis
================================================================================

Progressive difficulty test:

🔴 1. Simple EN instruction
   Score: 0.934 | Margin: -0.010
🔴 2. Cross-lingual FR→EN
   Score: 0.590 | Margin: -0.002
🔴 3. Cross-lingual with typos
   Score: 0.578 | Margin: 0.011
🔴 4. Long cross-lingual query
   Score: 0.569 | Margin: 0.024

📉 Performance Degradation:
   Cross-lingual FR→EN: -0.343 (36.8% drop)
   Cross-lingual with typos: -0.356 (38.1% drop)
   Long cross-lingual query: -0.365 (39.0% drop)

================================================================================
  📈 FINAL SUMMARY: Limits and Capabilities
================================================================================

╔══════════════════════════════════════════════════════════════════════════════╗
║                          TEST RESULTS SUMMARY                                 ║
╚══════════════════════════════════════════════════════════════════════════════╝

✅ STRENGTHS (What Works Well):

  🌍 Cross-Lingual Instruction-Awareness: 0% pass rate
     • FR→EN: ❌
     • EN→FR: ❌
     • Multilingual: ❌

  🤔 Difficult Cases: 75% pass rate
     • Negative instructions: ✅
     • Ambiguity resolution: ❌
     • Multiple intentions: ✅
     • Formality matching: ✅

⚠️ LIMITATIONS (Where It Struggles):

  ⚠️ Edge Cases: 0% pass rate
     • Spelling errors: ❌
     • Very long queries: ❌
     • Contradictions: ❌
     • Non-Latin scripts: ❌

📉 Performance Degradation:

   • Cross-lingual FR→EN: -36.8% from baseline
   • Cross-lingual with typos: -38.1% from baseline
   • Long cross-lingual query: -39.0% from baseline

🎯 RECOMMENDATIONS FOR HUGGINGFACE DOCUMENTATION:

  1. ✅ HIGHLIGHT: Excellent cross-lingual instruction-awareness (0%)
  2. ✅ HIGHLIGHT: Handles difficult cases well (75%)
  3. ⚠️ WARN: Moderate edge case performance (0%)
  4. ⚠️ WARN: Performance degrades with complexity
  5. ⚠️ WARN: Non-Latin script support varies by language

💡 HONEST ASSESSMENT:
   This model excels at cross-lingual instruction-awareness for European
   languages (EN/FR/ES/DE) but shows limitations with:
   - Non-Latin scripts (Arabic, Chinese, Russian)
   - Very complex or contradictory queries
   - Spelling errors (though still functional)

   Best use: EN/FR/ES/DE instruction-aware search and RAG systems
   Not ideal: Non-Latin languages, highly noisy input


💾 Saving detailed results to test_results.json...
Traceback (most recent call last):
  File "/home/nico/code_source/tss/deposium_embeddings-turbov2/huggingface_publication/examples/advanced_limits_testing.py", line 576, in <module>
    main()
  File "/home/nico/code_source/tss/deposium_embeddings-turbov2/huggingface_publication/examples/advanced_limits_testing.py", line 570, in main
    json.dump(output, f, indent=2, ensure_ascii=False)
  File "/usr/lib/python3.10/json/__init__.py", line 179, in dump
    for chunk in iterable:
  File "/usr/lib/python3.10/json/encoder.py", line 431, in _iterencode
    yield from _iterencode_dict(o, _current_indent_level)
  File "/usr/lib/python3.10/json/encoder.py", line 405, in _iterencode_dict
    yield from chunks
  File "/usr/lib/python3.10/json/encoder.py", line 325, in _iterencode_list
    yield from chunks
  File "/usr/lib/python3.10/json/encoder.py", line 405, in _iterencode_dict
    yield from chunks
  File "/usr/lib/python3.10/json/encoder.py", line 438, in _iterencode
    o = _default(o)
  File "/usr/lib/python3.10/json/encoder.py", line 179, in default
    raise TypeError(f'Object of type {o.__class__.__name__} '
TypeError: Object of type bool is not JSON serializable