# Quick Start Guide Get started with **qwen25-deposium-1024d** in 3 simple steps: ## 1️⃣ Installation ```bash pip install model2vec scikit-learn numpy ``` ## 2️⃣ Load Model ```python from model2vec import StaticModel # Download and load (automatic) model = StaticModel.from_pretrained("tss-deposium/qwen25-deposium-1024d") ``` ## 3️⃣ Use It! ### Basic Encoding ```python # Encode some text texts = [ "How do I train a neural network?", "Neural network training tutorial", "Machine learning basics" ] embeddings = model.encode(texts) print(embeddings.shape) # (3, 1024) ``` ### Semantic Search ```python from sklearn.metrics.pairwise import cosine_similarity # Query query = "Explain quantum computing" query_emb = model.encode([query])[0] # Documents documents = [ "Quantum computing explanation and tutorial guide", "Classical computing architecture overview", "Quantum physics fundamentals" ] doc_embs = model.encode(documents) # Find most similar similarities = cosine_similarity([query_emb], doc_embs)[0] # Rank results for doc, score in sorted(zip(documents, similarities), key=lambda x: x[1], reverse=True): print(f"{score:.3f} - {doc}") ``` **Output:** ``` 0.947 - Quantum computing explanation and tutorial guide 0.612 - Quantum physics fundamentals 0.584 - Classical computing architecture overview ``` ### Instruction-Aware Search ```python # The model understands instructions! query = "Find articles about climate change" documents = [ "Climate change research articles and publications", # High match "Climate change is a serious issue", # Lower match ] query_emb = model.encode([query])[0] doc_embs = model.encode(documents) similarities = cosine_similarity([query_emb], doc_embs)[0] print(similarities) # [0.95, 0.61] - Correctly prioritizes "articles"! ``` ## 🎯 Next Steps - **Run examples:** Check `examples/instruction_awareness_demo.py` - **See benchmarks:** Read `BENCHMARKS.md` - **Explore use cases:** Check `examples/real_world_use_cases.py` ## 🔗 Links - **Model Card:** Full README with detailed info - **GitHub:** [deposium_embeddings-turbov2](https://github.com/theseedship/deposium_embeddings-turbov2) - **Report Issues:** [GitHub Issues](https://github.com/theseedship/deposium_embeddings-turbov2/issues) --- **Built with ❤️ by TSS Deposium**