--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: modernbert_base_slop_classifier_v2 results: [] --- # modernbert_base_slop_classifier_v2 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2727 - Accuracy: 0.8792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.6666666666666675e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 12 - total_train_batch_size: 24 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.8987 | 0.3180 | 150 | 0.3689 | 0.8255 | | 6.6255 | 0.6360 | 300 | 0.3250 | 0.8591 | | 5.764 | 0.9541 | 450 | 0.2727 | 0.8792 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1