Vu Anh
commited on
Commit
·
6b2c2e0
1
Parent(s):
25aa0d2
update
Browse files- inference.py +123 -45
- use_this_model.py +123 -61
inference.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
Inference script for Pulse Core 1 - Vietnamese
|
| 4 |
Loads trained sentiment models from local files and performs predictions.
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
import argparse
|
|
@@ -20,22 +21,34 @@ def find_local_models():
|
|
| 20 |
# Find exported sentiment models in project root
|
| 21 |
for filename in os.listdir('.'):
|
| 22 |
if filename.endswith('.joblib'):
|
| 23 |
-
if filename.startswith('
|
|
|
|
|
|
|
| 24 |
models['exported']['uts2017_sentiment'] = filename
|
| 25 |
|
| 26 |
# Find models in runs directory - prioritize SVC models
|
| 27 |
-
|
|
|
|
| 28 |
|
| 29 |
-
if
|
| 30 |
# Sort by modification time (most recent first)
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
# Prefer SVC models over other types
|
| 34 |
-
svc_models = [m for m in
|
| 35 |
if svc_models:
|
| 36 |
models['runs']['uts2017_sentiment'] = svc_models[0] # Most recent SVC
|
| 37 |
else:
|
| 38 |
-
models['runs']['uts2017_sentiment'] =
|
| 39 |
|
| 40 |
return models
|
| 41 |
|
|
@@ -78,9 +91,14 @@ def predict_text(model, text):
|
|
| 78 |
def interactive_mode(model, dataset_name):
|
| 79 |
"""Interactive prediction mode"""
|
| 80 |
print(f"\n{'='*60}")
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
while True:
|
| 86 |
try:
|
|
@@ -109,23 +127,39 @@ def interactive_mode(model, dataset_name):
|
|
| 109 |
|
| 110 |
|
| 111 |
def test_examples(model, dataset_name):
|
| 112 |
-
"""Test model with predefined
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
for text in examples:
|
| 131 |
prediction, confidence, top_predictions = predict_text(model, text)
|
|
@@ -147,30 +181,41 @@ def list_available_models():
|
|
| 147 |
"""List all available sentiment models"""
|
| 148 |
models = find_local_models()
|
| 149 |
|
| 150 |
-
print("Available Vietnamese
|
| 151 |
print("=" * 50)
|
| 152 |
|
| 153 |
if models['exported']:
|
| 154 |
print("\nExported Models (Project Root):")
|
| 155 |
for model_type, filename in models['exported'].items():
|
| 156 |
file_size = os.path.getsize(filename) / (1024 * 1024) # MB
|
| 157 |
-
|
|
|
|
| 158 |
|
| 159 |
if models['runs']:
|
| 160 |
print("\nRuns Models (Training Directory):")
|
| 161 |
for model_type, filepath in models['runs'].items():
|
| 162 |
file_size = os.path.getsize(filepath) / (1024 * 1024) # MB
|
| 163 |
-
|
|
|
|
| 164 |
|
| 165 |
if not models['exported'] and not models['runs']:
|
| 166 |
print("No local sentiment models found!")
|
| 167 |
-
print("Train a model first using:
|
|
|
|
|
|
|
| 168 |
|
| 169 |
|
| 170 |
def main():
|
| 171 |
"""Main function"""
|
| 172 |
parser = argparse.ArgumentParser(
|
| 173 |
-
description="Inference with local Pulse Core 1 Vietnamese
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
)
|
| 175 |
parser.add_argument(
|
| 176 |
"--model-path",
|
|
@@ -180,12 +225,12 @@ def main():
|
|
| 180 |
parser.add_argument(
|
| 181 |
"--text",
|
| 182 |
type=str,
|
| 183 |
-
help="Vietnamese
|
| 184 |
)
|
| 185 |
parser.add_argument(
|
| 186 |
"--test-examples",
|
| 187 |
action="store_true",
|
| 188 |
-
help="Test with predefined
|
| 189 |
)
|
| 190 |
parser.add_argument(
|
| 191 |
"--list-models",
|
|
@@ -210,22 +255,54 @@ def main():
|
|
| 210 |
# Find available models
|
| 211 |
models = find_local_models()
|
| 212 |
|
| 213 |
-
# Determine model path
|
| 214 |
model_path = None
|
| 215 |
-
dataset_name =
|
| 216 |
|
| 217 |
if args.model_path:
|
| 218 |
# Use specified model path
|
| 219 |
model_path = args.model_path
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
else:
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
if not model_path or not os.path.exists(model_path):
|
| 231 |
print(f"Model file not found: {model_path}")
|
|
@@ -255,7 +332,8 @@ def main():
|
|
| 255 |
|
| 256 |
else:
|
| 257 |
# Interactive mode
|
| 258 |
-
|
|
|
|
| 259 |
test_examples(model, dataset_name)
|
| 260 |
|
| 261 |
# Ask if user wants interactive mode
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
Inference script for Pulse Core 1 - Vietnamese Sentiment Analysis System.
|
| 4 |
Loads trained sentiment models from local files and performs predictions.
|
| 5 |
+
Supports both VLSP2016 general sentiment and UTS2017_Bank aspect sentiment models.
|
| 6 |
"""
|
| 7 |
|
| 8 |
import argparse
|
|
|
|
| 21 |
# Find exported sentiment models in project root
|
| 22 |
for filename in os.listdir('.'):
|
| 23 |
if filename.endswith('.joblib'):
|
| 24 |
+
if filename.startswith('vlsp2016_sentiment_'):
|
| 25 |
+
models['exported']['vlsp2016_sentiment'] = filename
|
| 26 |
+
elif filename.startswith('uts2017_sentiment_'):
|
| 27 |
models['exported']['uts2017_sentiment'] = filename
|
| 28 |
|
| 29 |
# Find models in runs directory - prioritize SVC models
|
| 30 |
+
vlsp_runs = glob.glob('runs/*/models/VLSP2016_Sentiment_*.joblib')
|
| 31 |
+
uts_runs = glob.glob('runs/*/models/UTS2017_Bank_AspectSentiment_*.joblib')
|
| 32 |
|
| 33 |
+
if vlsp_runs:
|
| 34 |
# Sort by modification time (most recent first)
|
| 35 |
+
vlsp_runs.sort(key=lambda x: os.path.getmtime(x), reverse=True)
|
| 36 |
+
# Prefer SVC models over other types
|
| 37 |
+
svc_models = [m for m in vlsp_runs if 'SVC' in m]
|
| 38 |
+
if svc_models:
|
| 39 |
+
models['runs']['vlsp2016_sentiment'] = svc_models[0] # Most recent SVC
|
| 40 |
+
else:
|
| 41 |
+
models['runs']['vlsp2016_sentiment'] = vlsp_runs[0] # Most recent any model
|
| 42 |
|
| 43 |
+
if uts_runs:
|
| 44 |
+
# Sort by modification time (most recent first)
|
| 45 |
+
uts_runs.sort(key=lambda x: os.path.getmtime(x), reverse=True)
|
| 46 |
# Prefer SVC models over other types
|
| 47 |
+
svc_models = [m for m in uts_runs if 'SVC' in m]
|
| 48 |
if svc_models:
|
| 49 |
models['runs']['uts2017_sentiment'] = svc_models[0] # Most recent SVC
|
| 50 |
else:
|
| 51 |
+
models['runs']['uts2017_sentiment'] = uts_runs[0] # Most recent any model
|
| 52 |
|
| 53 |
return models
|
| 54 |
|
|
|
|
| 91 |
def interactive_mode(model, dataset_name):
|
| 92 |
"""Interactive prediction mode"""
|
| 93 |
print(f"\n{'='*60}")
|
| 94 |
+
if dataset_name == 'vlsp2016_sentiment':
|
| 95 |
+
print("INTERACTIVE MODE - VIETNAMESE GENERAL SENTIMENT ANALYSIS")
|
| 96 |
+
print(f"{'='*60}")
|
| 97 |
+
print("Enter Vietnamese text to analyze sentiment (type 'quit' to exit):")
|
| 98 |
+
else:
|
| 99 |
+
print("INTERACTIVE MODE - VIETNAMESE BANKING ASPECT SENTIMENT ANALYSIS")
|
| 100 |
+
print(f"{'='*60}")
|
| 101 |
+
print("Enter Vietnamese banking text to analyze aspect and sentiment (type 'quit' to exit):")
|
| 102 |
|
| 103 |
while True:
|
| 104 |
try:
|
|
|
|
| 127 |
|
| 128 |
|
| 129 |
def test_examples(model, dataset_name):
|
| 130 |
+
"""Test model with predefined examples based on dataset type"""
|
| 131 |
+
if dataset_name == 'vlsp2016_sentiment':
|
| 132 |
+
examples = [
|
| 133 |
+
"Sản phẩm này rất tốt, tôi rất hài lòng",
|
| 134 |
+
"Chất lượng dịch vụ tệ quá",
|
| 135 |
+
"Giá cả hợp lý, có thể chấp nhận được",
|
| 136 |
+
"Nhân viên phục vụ rất nhiệt tình",
|
| 137 |
+
"Đồ ăn không ngon, sẽ không quay lại",
|
| 138 |
+
"Giao hàng nhanh chóng, đóng gói cẩn thận",
|
| 139 |
+
"Sản phẩm bình thường, không có gì đặc biệt",
|
| 140 |
+
"Rất đáng tiền, chất lượng tuyệt vời",
|
| 141 |
+
"Không như mong đợi, khá thất vọng",
|
| 142 |
+
"Dịch vụ khách hàng tốt, giải quyết nhanh chóng"
|
| 143 |
+
]
|
| 144 |
+
print("\n" + "="*60)
|
| 145 |
+
print("TESTING VIETNAMESE GENERAL SENTIMENT ANALYSIS")
|
| 146 |
+
print("="*60)
|
| 147 |
+
else:
|
| 148 |
+
examples = [
|
| 149 |
+
"Tôi muốn mở tài khoản tiết kiệm mới",
|
| 150 |
+
"Lãi suất vay mua nhà hiện tại quá cao",
|
| 151 |
+
"Làm thế nào để đăng ký internet banking?",
|
| 152 |
+
"Chi phí chuyển tiền ra nước ngoài rất đắt",
|
| 153 |
+
"Ngân hàng ACB có uy tín không?",
|
| 154 |
+
"Tôi cần hỗ trợ về dịch vụ ngân hàng",
|
| 155 |
+
"Thẻ tín dụng bị khóa không rõ lý do",
|
| 156 |
+
"Dịch vụ chăm sóc khách hàng rất tệ",
|
| 157 |
+
"Khuyến mãi tháng này rất hấp dẫn",
|
| 158 |
+
"Bảo mật tài khoản có được đảm bảo không?"
|
| 159 |
+
]
|
| 160 |
+
print("\n" + "="*60)
|
| 161 |
+
print("TESTING VIETNAMESE BANKING ASPECT SENTIMENT ANALYSIS")
|
| 162 |
+
print("="*60)
|
| 163 |
|
| 164 |
for text in examples:
|
| 165 |
prediction, confidence, top_predictions = predict_text(model, text)
|
|
|
|
| 181 |
"""List all available sentiment models"""
|
| 182 |
models = find_local_models()
|
| 183 |
|
| 184 |
+
print("Available Vietnamese Sentiment Models:")
|
| 185 |
print("=" * 50)
|
| 186 |
|
| 187 |
if models['exported']:
|
| 188 |
print("\nExported Models (Project Root):")
|
| 189 |
for model_type, filename in models['exported'].items():
|
| 190 |
file_size = os.path.getsize(filename) / (1024 * 1024) # MB
|
| 191 |
+
dataset_type = "General Sentiment" if "vlsp2016" in model_type else "Banking Aspect Sentiment"
|
| 192 |
+
print(f" {model_type}: {filename} ({file_size:.1f}MB) - {dataset_type}")
|
| 193 |
|
| 194 |
if models['runs']:
|
| 195 |
print("\nRuns Models (Training Directory):")
|
| 196 |
for model_type, filepath in models['runs'].items():
|
| 197 |
file_size = os.path.getsize(filepath) / (1024 * 1024) # MB
|
| 198 |
+
dataset_type = "General Sentiment" if "vlsp2016" in model_type else "Banking Aspect Sentiment"
|
| 199 |
+
print(f" {model_type}: {filepath} ({file_size:.1f}MB) - {dataset_type}")
|
| 200 |
|
| 201 |
if not models['exported'] and not models['runs']:
|
| 202 |
print("No local sentiment models found!")
|
| 203 |
+
print("Train a model first using:")
|
| 204 |
+
print(" VLSP2016: python train.py --dataset vlsp2016 --export-model")
|
| 205 |
+
print(" UTS2017: python train.py --dataset uts2017 --export-model")
|
| 206 |
|
| 207 |
|
| 208 |
def main():
|
| 209 |
"""Main function"""
|
| 210 |
parser = argparse.ArgumentParser(
|
| 211 |
+
description="Inference with local Pulse Core 1 Vietnamese sentiment models"
|
| 212 |
+
)
|
| 213 |
+
parser.add_argument(
|
| 214 |
+
"--dataset",
|
| 215 |
+
type=str,
|
| 216 |
+
choices=["vlsp2016", "uts2017", "auto"],
|
| 217 |
+
default="auto",
|
| 218 |
+
help="Dataset type to use (default: auto-detect)"
|
| 219 |
)
|
| 220 |
parser.add_argument(
|
| 221 |
"--model-path",
|
|
|
|
| 225 |
parser.add_argument(
|
| 226 |
"--text",
|
| 227 |
type=str,
|
| 228 |
+
help="Vietnamese text to analyze (if not provided, enters interactive mode)"
|
| 229 |
)
|
| 230 |
parser.add_argument(
|
| 231 |
"--test-examples",
|
| 232 |
action="store_true",
|
| 233 |
+
help="Test with predefined examples"
|
| 234 |
)
|
| 235 |
parser.add_argument(
|
| 236 |
"--list-models",
|
|
|
|
| 255 |
# Find available models
|
| 256 |
models = find_local_models()
|
| 257 |
|
| 258 |
+
# Determine model path and dataset
|
| 259 |
model_path = None
|
| 260 |
+
dataset_name = None
|
| 261 |
|
| 262 |
if args.model_path:
|
| 263 |
# Use specified model path
|
| 264 |
model_path = args.model_path
|
| 265 |
+
# Try to detect dataset from filename
|
| 266 |
+
if 'vlsp2016' in args.model_path:
|
| 267 |
+
dataset_name = 'vlsp2016_sentiment'
|
| 268 |
+
elif 'uts2017' in args.model_path:
|
| 269 |
+
dataset_name = 'uts2017_sentiment'
|
| 270 |
else:
|
| 271 |
+
dataset_name = 'unknown'
|
| 272 |
+
else:
|
| 273 |
+
# Auto-select or use specified dataset
|
| 274 |
+
if args.dataset == 'vlsp2016':
|
| 275 |
+
if models[args.source] and 'vlsp2016_sentiment' in models[args.source]:
|
| 276 |
+
model_path = models[args.source]['vlsp2016_sentiment']
|
| 277 |
+
dataset_name = 'vlsp2016_sentiment'
|
| 278 |
+
print("Selected VLSP2016 general sentiment model")
|
| 279 |
+
else:
|
| 280 |
+
print("No VLSP2016 models found!")
|
| 281 |
+
list_available_models()
|
| 282 |
+
return
|
| 283 |
+
elif args.dataset == 'uts2017':
|
| 284 |
+
if models[args.source] and 'uts2017_sentiment' in models[args.source]:
|
| 285 |
+
model_path = models[args.source]['uts2017_sentiment']
|
| 286 |
+
dataset_name = 'uts2017_sentiment'
|
| 287 |
+
print("Selected UTS2017 banking aspect sentiment model")
|
| 288 |
+
else:
|
| 289 |
+
print("No UTS2017 models found!")
|
| 290 |
+
list_available_models()
|
| 291 |
+
return
|
| 292 |
+
else: # auto
|
| 293 |
+
# Prefer VLSP2016 if available, otherwise UTS2017
|
| 294 |
+
if models[args.source] and 'vlsp2016_sentiment' in models[args.source]:
|
| 295 |
+
model_path = models[args.source]['vlsp2016_sentiment']
|
| 296 |
+
dataset_name = 'vlsp2016_sentiment'
|
| 297 |
+
print("Auto-selected VLSP2016 general sentiment model")
|
| 298 |
+
elif models[args.source] and 'uts2017_sentiment' in models[args.source]:
|
| 299 |
+
model_path = models[args.source]['uts2017_sentiment']
|
| 300 |
+
dataset_name = 'uts2017_sentiment'
|
| 301 |
+
print("Auto-selected UTS2017 banking aspect sentiment model")
|
| 302 |
+
else:
|
| 303 |
+
print("No sentiment models found!")
|
| 304 |
+
list_available_models()
|
| 305 |
+
return
|
| 306 |
|
| 307 |
if not model_path or not os.path.exists(model_path):
|
| 308 |
print(f"Model file not found: {model_path}")
|
|
|
|
| 332 |
|
| 333 |
else:
|
| 334 |
# Interactive mode
|
| 335 |
+
model_type = "General Sentiment" if dataset_name == 'vlsp2016_sentiment' else "Banking Aspect Sentiment"
|
| 336 |
+
print(f"Loaded {model_type} model: {os.path.basename(model_path)}")
|
| 337 |
test_examples(model, dataset_name)
|
| 338 |
|
| 339 |
# Ask if user wants interactive mode
|
use_this_model.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
Demonstration script for using Pulse Core 1 - Vietnamese
|
| 4 |
-
Shows how to download and use the pre-trained aspect sentiment
|
| 5 |
"""
|
| 6 |
|
| 7 |
from huggingface_hub import hf_hub_download
|
|
@@ -31,10 +31,19 @@ def predict_text(model, text):
|
|
| 31 |
return None, 0, []
|
| 32 |
|
| 33 |
|
| 34 |
-
def load_model_from_hub():
|
| 35 |
-
"""Load the pre-trained Pulse Core 1
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
try:
|
| 40 |
model_path = hf_hub_download("undertheseanlp/pulse_core_1", filename)
|
|
@@ -42,9 +51,9 @@ def load_model_from_hub():
|
|
| 42 |
|
| 43 |
print("Loading model...")
|
| 44 |
model = joblib.load(model_path)
|
| 45 |
-
print(f"Model loaded successfully. Classes: {len(model.classes_)}
|
| 46 |
print(f"Model type: {type(model.named_steps['clf']).__name__}")
|
| 47 |
-
return model
|
| 48 |
except Exception as e:
|
| 49 |
print(f"Error downloading model: {e}")
|
| 50 |
print("This might mean the model file hasn't been uploaded to Hugging Face Hub yet.")
|
|
@@ -52,41 +61,61 @@ def load_model_from_hub():
|
|
| 52 |
raise
|
| 53 |
|
| 54 |
|
| 55 |
-
def
|
| 56 |
-
"""Demonstrate predictions on Vietnamese
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
# Vietnamese banking examples with expected aspect-sentiment combinations
|
| 62 |
-
examples = [
|
| 63 |
-
("CUSTOMER_SUPPORT#negative", "Dịch vụ chăm sóc khách hàng rất tệ"),
|
| 64 |
-
("CUSTOMER_SUPPORT#positive", "Nhân viên hỗ trợ rất nhiệt tình"),
|
| 65 |
-
("TRADEMARK#positive", "Ngân hàng ACB có uy tín tốt"),
|
| 66 |
-
("TRADEMARK#negative", "Thương hiệu ngân hàng này không đáng tin cậy"),
|
| 67 |
-
("LOAN#positive", "Lãi suất vay mua nhà rất ưu đãi"),
|
| 68 |
-
("LOAN#negative", "Lãi suất vay quá cao, không chấp nhận được"),
|
| 69 |
-
("INTEREST_RATE#negative", "Lãi suất tiết kiệm thấp quá"),
|
| 70 |
-
("INTEREST_RATE#positive", "Lãi suất gửi tiết kiệm khá hấp dẫn"),
|
| 71 |
-
("CARD#negative", "Thẻ tín dụng bị khóa không rõ lý do"),
|
| 72 |
-
("CARD#positive", "Thẻ ATM rất tiện lợi khi sử dụng"),
|
| 73 |
-
("INTERNET_BANKING#negative", "Internet banking hay bị lỗi"),
|
| 74 |
-
("INTERNET_BANKING#positive", "Ứng dụng ngân hàng điện tử dễ sử dụng"),
|
| 75 |
-
("MONEY_TRANSFER#negative", "Phí chuyển tiền quá đắt"),
|
| 76 |
-
("PROMOTION#positive", "Chương trình khuyến mãi rất hấp dẫn"),
|
| 77 |
-
("SECURITY#positive", "Bảo mật tài khoản rất tốt")
|
| 78 |
-
]
|
| 79 |
-
|
| 80 |
-
print("Testing Vietnamese banking aspect sentiment analysis:")
|
| 81 |
print("-" * 60)
|
| 82 |
|
| 83 |
-
for
|
| 84 |
try:
|
| 85 |
prediction, confidence, top_predictions = predict_text(model, text)
|
| 86 |
|
| 87 |
if prediction:
|
| 88 |
print(f"Text: {text}")
|
| 89 |
-
print(f"Expected: {
|
| 90 |
print(f"Predicted: {prediction}")
|
| 91 |
print(f"Confidence: {confidence:.3f}")
|
| 92 |
|
|
@@ -102,12 +131,17 @@ def predict_banking_examples(model):
|
|
| 102 |
print("-" * 60)
|
| 103 |
|
| 104 |
|
| 105 |
-
def interactive_mode(model):
|
| 106 |
-
"""Interactive mode for testing custom
|
| 107 |
print("\n" + "="*60)
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
while True:
|
| 113 |
try:
|
|
@@ -122,7 +156,10 @@ def interactive_mode(model):
|
|
| 122 |
prediction, confidence, top_predictions = predict_text(model, user_input)
|
| 123 |
|
| 124 |
if prediction:
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
| 126 |
print(f"Confidence: {confidence:.3f}")
|
| 127 |
|
| 128 |
# Show top 3 predictions
|
|
@@ -145,25 +182,35 @@ def simple_usage_examples():
|
|
| 145 |
|
| 146 |
print("Code examples:")
|
| 147 |
print("""
|
| 148 |
-
# Pulse Core 1
|
| 149 |
from huggingface_hub import hf_hub_download
|
| 150 |
import joblib
|
| 151 |
|
| 152 |
-
#
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
hf_hub_download("undertheseanlp/pulse_core_1", "uts2017_sentiment_20250928_131716.joblib")
|
| 155 |
)
|
| 156 |
|
| 157 |
# Make prediction on banking text
|
| 158 |
bank_text = "Tôi muốn mở tài khoản tiết kiệm"
|
| 159 |
-
prediction =
|
| 160 |
print(f"Aspect-Sentiment: {prediction}")
|
| 161 |
|
| 162 |
# For detailed predictions with confidence scores
|
| 163 |
-
probabilities =
|
| 164 |
top_indices = probabilities.argsort()[-3:][::-1]
|
| 165 |
for idx in top_indices:
|
| 166 |
-
category =
|
| 167 |
prob = probabilities[idx]
|
| 168 |
print(f"{category}: {prob:.3f}")
|
| 169 |
|
|
@@ -173,48 +220,63 @@ for idx in top_indices:
|
|
| 173 |
|
| 174 |
def main():
|
| 175 |
"""Main demonstration function"""
|
| 176 |
-
print("Pulse Core 1 - Vietnamese
|
| 177 |
print("=" * 60)
|
| 178 |
|
| 179 |
try:
|
| 180 |
# Show simple usage examples
|
| 181 |
simple_usage_examples()
|
| 182 |
|
| 183 |
-
# Test
|
| 184 |
print("\n" + "="*60)
|
| 185 |
-
print("TESTING PULSE CORE 1
|
| 186 |
print("="*60)
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
# Check if we're in an interactive environment
|
| 192 |
try:
|
| 193 |
import sys
|
| 194 |
if hasattr(sys, 'ps1') or sys.stdin.isatty():
|
| 195 |
-
choice = input("\nEnter interactive mode
|
| 196 |
|
| 197 |
-
if choice
|
| 198 |
-
interactive_mode(
|
|
|
|
|
|
|
| 199 |
|
| 200 |
except (EOFError, OSError):
|
| 201 |
print("\nInteractive mode not available in this environment.")
|
| 202 |
print("Run this script in a regular terminal to use interactive mode.")
|
| 203 |
|
| 204 |
print("\nDemonstration complete!")
|
| 205 |
-
print("\nPulse Core 1
|
| 206 |
print("- Repository: undertheseanlp/pulse_core_1")
|
| 207 |
-
print("- Model
|
| 208 |
-
print("
|
| 209 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
print("- Model type: Support Vector Classification (SVC)")
|
| 211 |
-
print("- Test accuracy: 71.72%")
|
| 212 |
|
| 213 |
except ImportError:
|
| 214 |
print("Error: huggingface_hub is required. Install with:")
|
| 215 |
print(" pip install huggingface_hub")
|
| 216 |
except Exception as e:
|
| 217 |
-
print(f"Error loading
|
| 218 |
print("\nMake sure you have internet connection and try again.")
|
| 219 |
|
| 220 |
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
Demonstration script for using Pulse Core 1 - Vietnamese Sentiment Analysis System from Hugging Face Hub.
|
| 4 |
+
Shows how to download and use the pre-trained sentiment models for both general sentiment and banking aspect sentiment.
|
| 5 |
"""
|
| 6 |
|
| 7 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 31 |
return None, 0, []
|
| 32 |
|
| 33 |
|
| 34 |
+
def load_model_from_hub(model_type="vlsp2016"):
|
| 35 |
+
"""Load the pre-trained Pulse Core 1 sentiment model from Hugging Face Hub
|
| 36 |
+
Args:
|
| 37 |
+
model_type: 'vlsp2016' for general sentiment or 'uts2017' for banking aspect sentiment
|
| 38 |
+
"""
|
| 39 |
+
if model_type == "vlsp2016":
|
| 40 |
+
filename = "vlsp2016_sentiment_20250929_075529.joblib"
|
| 41 |
+
print("Downloading Pulse Core 1 (Vietnamese General Sentiment) model from Hugging Face Hub...")
|
| 42 |
+
classes_desc = "sentiment classes (positive, negative, neutral)"
|
| 43 |
+
else:
|
| 44 |
+
filename = "uts2017_sentiment_20250928_131716.joblib"
|
| 45 |
+
print("Downloading Pulse Core 1 (Vietnamese Banking Aspect Sentiment) model from Hugging Face Hub...")
|
| 46 |
+
classes_desc = "aspect-sentiment combinations"
|
| 47 |
|
| 48 |
try:
|
| 49 |
model_path = hf_hub_download("undertheseanlp/pulse_core_1", filename)
|
|
|
|
| 51 |
|
| 52 |
print("Loading model...")
|
| 53 |
model = joblib.load(model_path)
|
| 54 |
+
print(f"Model loaded successfully. Classes: {len(model.classes_)} {classes_desc}")
|
| 55 |
print(f"Model type: {type(model.named_steps['clf']).__name__}")
|
| 56 |
+
return model, model_type
|
| 57 |
except Exception as e:
|
| 58 |
print(f"Error downloading model: {e}")
|
| 59 |
print("This might mean the model file hasn't been uploaded to Hugging Face Hub yet.")
|
|
|
|
| 61 |
raise
|
| 62 |
|
| 63 |
|
| 64 |
+
def predict_sentiment_examples(model, model_type):
|
| 65 |
+
"""Demonstrate predictions on Vietnamese sentiment examples"""
|
| 66 |
+
if model_type == "vlsp2016":
|
| 67 |
+
print("\n" + "="*60)
|
| 68 |
+
print("VIETNAMESE GENERAL SENTIMENT ANALYSIS EXAMPLES")
|
| 69 |
+
print("="*60)
|
| 70 |
+
|
| 71 |
+
# Vietnamese general sentiment examples
|
| 72 |
+
examples = [
|
| 73 |
+
("positive", "Sản phẩm này rất tốt, tôi rất hài lòng"),
|
| 74 |
+
("negative", "Chất lượng dịch vụ tệ quá"),
|
| 75 |
+
("neutral", "Giá cả hợp lý, có thể chấp nhận được"),
|
| 76 |
+
("positive", "Nhân viên phục vụ rất nhiệt tình"),
|
| 77 |
+
("negative", "Đồ ăn không ngon, sẽ không quay lại"),
|
| 78 |
+
("positive", "Giao hàng nhanh chóng, đóng gói cẩn thận"),
|
| 79 |
+
("neutral", "Sản phẩm bình thường, không có gì đặc biệt"),
|
| 80 |
+
("positive", "Rất đáng tiền, chất lượng tuyệt vời"),
|
| 81 |
+
("negative", "Không như mong đợi, khá thất vọng"),
|
| 82 |
+
("positive", "Dịch vụ khách hàng tốt, giải quyết nhanh chóng")
|
| 83 |
+
]
|
| 84 |
+
print("Testing Vietnamese general sentiment analysis:")
|
| 85 |
+
else:
|
| 86 |
+
print("\n" + "="*60)
|
| 87 |
+
print("VIETNAMESE BANKING ASPECT SENTIMENT ANALYSIS EXAMPLES")
|
| 88 |
+
print("="*60)
|
| 89 |
+
|
| 90 |
+
# Vietnamese banking examples with expected aspect-sentiment combinations
|
| 91 |
+
examples = [
|
| 92 |
+
("CUSTOMER_SUPPORT#negative", "Dịch vụ chăm sóc khách hàng rất tệ"),
|
| 93 |
+
("CUSTOMER_SUPPORT#positive", "Nhân viên hỗ trợ rất nhiệt tình"),
|
| 94 |
+
("TRADEMARK#positive", "Ngân hàng ACB có uy tín tốt"),
|
| 95 |
+
("TRADEMARK#negative", "Thương hiệu ngân hàng này không đáng tin cậy"),
|
| 96 |
+
("LOAN#positive", "Lãi suất vay mua nhà rất ưu đãi"),
|
| 97 |
+
("LOAN#negative", "Lãi suất vay quá cao, không chấp nhận được"),
|
| 98 |
+
("INTEREST_RATE#negative", "Lãi suất tiết kiệm thấp quá"),
|
| 99 |
+
("INTEREST_RATE#positive", "Lãi suất gửi tiết kiệm khá hấp dẫn"),
|
| 100 |
+
("CARD#negative", "Thẻ tín dụng bị khóa không rõ lý do"),
|
| 101 |
+
("CARD#positive", "Thẻ ATM rất tiện lợi khi sử dụng"),
|
| 102 |
+
("INTERNET_BANKING#negative", "Internet banking hay bị lỗi"),
|
| 103 |
+
("INTERNET_BANKING#positive", "Ứng dụng ngân hàng điện tử dễ sử dụng"),
|
| 104 |
+
("MONEY_TRANSFER#negative", "Phí chuyển tiền quá đắt"),
|
| 105 |
+
("PROMOTION#positive", "Chương trình khuyến mãi rất hấp dẫn"),
|
| 106 |
+
("SECURITY#positive", "Bảo mật tài khoản rất tốt")
|
| 107 |
+
]
|
| 108 |
+
print("Testing Vietnamese banking aspect sentiment analysis:")
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
print("-" * 60)
|
| 111 |
|
| 112 |
+
for expected_label, text in examples:
|
| 113 |
try:
|
| 114 |
prediction, confidence, top_predictions = predict_text(model, text)
|
| 115 |
|
| 116 |
if prediction:
|
| 117 |
print(f"Text: {text}")
|
| 118 |
+
print(f"Expected: {expected_label}")
|
| 119 |
print(f"Predicted: {prediction}")
|
| 120 |
print(f"Confidence: {confidence:.3f}")
|
| 121 |
|
|
|
|
| 131 |
print("-" * 60)
|
| 132 |
|
| 133 |
|
| 134 |
+
def interactive_mode(model, model_type):
|
| 135 |
+
"""Interactive mode for testing custom text"""
|
| 136 |
print("\n" + "="*60)
|
| 137 |
+
if model_type == "vlsp2016":
|
| 138 |
+
print("INTERACTIVE MODE - VIETNAMESE GENERAL SENTIMENT ANALYSIS")
|
| 139 |
+
print("="*60)
|
| 140 |
+
print("Enter Vietnamese text to analyze sentiment (type 'quit' to exit):")
|
| 141 |
+
else:
|
| 142 |
+
print("INTERACTIVE MODE - VIETNAMESE BANKING ASPECT SENTIMENT ANALYSIS")
|
| 143 |
+
print("="*60)
|
| 144 |
+
print("Enter Vietnamese banking text to analyze aspect and sentiment (type 'quit' to exit):")
|
| 145 |
|
| 146 |
while True:
|
| 147 |
try:
|
|
|
|
| 156 |
prediction, confidence, top_predictions = predict_text(model, user_input)
|
| 157 |
|
| 158 |
if prediction:
|
| 159 |
+
if model_type == "vlsp2016":
|
| 160 |
+
print(f"Predicted sentiment: {prediction}")
|
| 161 |
+
else:
|
| 162 |
+
print(f"Predicted aspect-sentiment: {prediction}")
|
| 163 |
print(f"Confidence: {confidence:.3f}")
|
| 164 |
|
| 165 |
# Show top 3 predictions
|
|
|
|
| 182 |
|
| 183 |
print("Code examples:")
|
| 184 |
print("""
|
| 185 |
+
# Pulse Core 1 Models (Vietnamese Sentiment Analysis)
|
| 186 |
from huggingface_hub import hf_hub_download
|
| 187 |
import joblib
|
| 188 |
|
| 189 |
+
# Option 1: General Sentiment Analysis (VLSP2016)
|
| 190 |
+
general_model = joblib.load(
|
| 191 |
+
hf_hub_download("undertheseanlp/pulse_core_1", "vlsp2016_sentiment_20250929_075529.joblib")
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
# Make prediction on general text
|
| 195 |
+
general_text = "Sản phẩm này rất tốt"
|
| 196 |
+
prediction = general_model.predict([general_text])[0]
|
| 197 |
+
print(f"Sentiment: {prediction}")
|
| 198 |
+
|
| 199 |
+
# Option 2: Banking Aspect Sentiment Analysis (UTS2017_Bank)
|
| 200 |
+
banking_model = joblib.load(
|
| 201 |
hf_hub_download("undertheseanlp/pulse_core_1", "uts2017_sentiment_20250928_131716.joblib")
|
| 202 |
)
|
| 203 |
|
| 204 |
# Make prediction on banking text
|
| 205 |
bank_text = "Tôi muốn mở tài khoản tiết kiệm"
|
| 206 |
+
prediction = banking_model.predict([bank_text])[0]
|
| 207 |
print(f"Aspect-Sentiment: {prediction}")
|
| 208 |
|
| 209 |
# For detailed predictions with confidence scores
|
| 210 |
+
probabilities = banking_model.predict_proba([bank_text])[0]
|
| 211 |
top_indices = probabilities.argsort()[-3:][::-1]
|
| 212 |
for idx in top_indices:
|
| 213 |
+
category = banking_model.classes_[idx]
|
| 214 |
prob = probabilities[idx]
|
| 215 |
print(f"{category}: {prob:.3f}")
|
| 216 |
|
|
|
|
| 220 |
|
| 221 |
def main():
|
| 222 |
"""Main demonstration function"""
|
| 223 |
+
print("Pulse Core 1 - Vietnamese Sentiment Analysis System")
|
| 224 |
print("=" * 60)
|
| 225 |
|
| 226 |
try:
|
| 227 |
# Show simple usage examples
|
| 228 |
simple_usage_examples()
|
| 229 |
|
| 230 |
+
# Test both models
|
| 231 |
print("\n" + "="*60)
|
| 232 |
+
print("TESTING PULSE CORE 1 MODELS")
|
| 233 |
print("="*60)
|
| 234 |
|
| 235 |
+
# Test VLSP2016 general sentiment model
|
| 236 |
+
print("\n1. Testing VLSP2016 General Sentiment Model")
|
| 237 |
+
print("-" * 40)
|
| 238 |
+
vlsp_model, vlsp_type = load_model_from_hub("vlsp2016")
|
| 239 |
+
predict_sentiment_examples(vlsp_model, vlsp_type)
|
| 240 |
+
|
| 241 |
+
# Test UTS2017 banking aspect sentiment model
|
| 242 |
+
print("\n2. Testing UTS2017 Banking Aspect Sentiment Model")
|
| 243 |
+
print("-" * 40)
|
| 244 |
+
uts_model, uts_type = load_model_from_hub("uts2017")
|
| 245 |
+
predict_sentiment_examples(uts_model, uts_type)
|
| 246 |
|
| 247 |
# Check if we're in an interactive environment
|
| 248 |
try:
|
| 249 |
import sys
|
| 250 |
if hasattr(sys, 'ps1') or sys.stdin.isatty():
|
| 251 |
+
choice = input("\nEnter interactive mode? Choose model type (vlsp2016/uts2017/n): ").strip().lower()
|
| 252 |
|
| 253 |
+
if choice == 'vlsp2016':
|
| 254 |
+
interactive_mode(vlsp_model, "vlsp2016")
|
| 255 |
+
elif choice == 'uts2017':
|
| 256 |
+
interactive_mode(uts_model, "uts2017")
|
| 257 |
|
| 258 |
except (EOFError, OSError):
|
| 259 |
print("\nInteractive mode not available in this environment.")
|
| 260 |
print("Run this script in a regular terminal to use interactive mode.")
|
| 261 |
|
| 262 |
print("\nDemonstration complete!")
|
| 263 |
+
print("\nPulse Core 1 models are available on Hugging Face Hub:")
|
| 264 |
print("- Repository: undertheseanlp/pulse_core_1")
|
| 265 |
+
print("- VLSP2016 Model: vlsp2016_sentiment_20250929_075529.joblib")
|
| 266 |
+
print(" * Task: Vietnamese General Sentiment Analysis")
|
| 267 |
+
print(" * Classes: 3 sentiment polarities")
|
| 268 |
+
print(" * Test accuracy: 71.14%")
|
| 269 |
+
print("- UTS2017 Model: uts2017_sentiment_20250928_131716.joblib")
|
| 270 |
+
print(" * Task: Vietnamese Banking Aspect Sentiment Analysis")
|
| 271 |
+
print(" * Classes: 35 aspect-sentiment combinations")
|
| 272 |
+
print(" * Test accuracy: 71.72%")
|
| 273 |
print("- Model type: Support Vector Classification (SVC)")
|
|
|
|
| 274 |
|
| 275 |
except ImportError:
|
| 276 |
print("Error: huggingface_hub is required. Install with:")
|
| 277 |
print(" pip install huggingface_hub")
|
| 278 |
except Exception as e:
|
| 279 |
+
print(f"Error loading models: {e}")
|
| 280 |
print("\nMake sure you have internet connection and try again.")
|
| 281 |
|
| 282 |
|