File size: 2,751 Bytes
ab3c5e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87a5248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
language: en
tags:
- mobility-prediction
- lstm
- deep-learning
- wireless-networks
- handover-prediction
license: mit
datasets:
- mobility-data
metrics:
- accuracy
- precision
- recall
- auc
---

# Mobility Prediction Model

A deep learning-based system for predicting mobility patterns and handover requirements in wireless networks using LSTM neural networks.

## Overview

This project implements a sophisticated mobility prediction model that uses historical mobility data to predict when a handover between network cells will be needed. The model leverages LSTM (Long Short-Term Memory) networks to capture temporal patterns in user mobility and network conditions.

## Features

- LSTM-based deep learning model for sequence prediction
- Comprehensive feature engineering including:
  - Spatial features (x, y coordinates)
  - Temporal features (velocity, heading)
  - Network metrics (signal strength, SINR, network load, throughput)
  - Time-based cyclical features (hour of day, day of week)
  - Categorical features (pattern type, device type)
- Advanced model architecture with:
  - Dual LSTM layers with dropout for regularization
  - Dense layers for final prediction
  - Binary classification output
- Robust data preparation pipeline
- Early stopping and learning rate reduction callbacks
- Comprehensive model evaluation metrics

## Model Architecture

The model consists of:
- Input LSTM layer (64 units)
- Dropout layer (0.3)
- Second LSTM layer (32 units)
- Dropout layer (0.3)
- Dense layer (32 units, ReLU activation)
- Output layer (1 unit, Sigmoid activation)

## Performance Metrics

The model is evaluated using:
- Accuracy
- Precision
- Recall
- AUC (Area Under the Curve)

## Data Requirements

The model expects the following features:
- Spatial data: x, y coordinates
- Mobility metrics: velocity, heading
- Network metrics: signal_strength, sinr, network_load, throughput_mbps
- Temporal data: timestamp
- Categorical data: pattern_type, device_type (optional)
- Target variable: handover_needed

## Usage

```python
# Prepare your data
X, y, scaler, feature_names = prepare_lstm_data_robust(
    data,
    sequence_length=20,
    prediction_horizon=5
)

# Build and train the model
model = build_mobility_prediction_model(input_shape=(X.shape[1], X.shape[2]))
model.fit(X_train, y_train, validation_data=(X_val, y_val))
```

## Dependencies

- TensorFlow
- NumPy
- Pandas
- Scikit-learn

## Model Training

The model includes several training optimizations:
- Early stopping with patience=10
- Learning rate reduction on plateau
- Batch size of 32
- Adam optimizer with learning rate 0.001
- Binary cross-entropy loss function

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.