danielhanchen commited on
Commit
9f7ca79
·
verified ·
1 Parent(s): 1e49d19

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -36,3 +36,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
36
  mmproj-F16.gguf filter=lfs diff=lfs merge=lfs -text
37
  mmproj-BF16.gguf filter=lfs diff=lfs merge=lfs -text
38
  mmproj-F32.gguf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
36
  mmproj-F16.gguf filter=lfs diff=lfs merge=lfs -text
37
  mmproj-BF16.gguf filter=lfs diff=lfs merge=lfs -text
38
  mmproj-F32.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Devstral-Small-2505-UD-IQ1_S.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Devstral-Small-2505-UD-Q2_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Devstral-Small-2505-UD-Q3_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Devstral-Small-2505-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Devstral-Small-2505-UD-Q4_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Devstral-Small-2505-UD-Q5_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
Devstral-Small-2505-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d98d8300f6907baf284ac8d81c190bf9390cd9e55a0d8dee93693da1cd4e656b
3
+ size 14333916224
Devstral-Small-2505-UD-IQ1_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d12d88dbb1dce118496cc89a9375f846b3b764ddaa1fd882692d614f22892e19
3
+ size 5558563904
Devstral-Small-2505-UD-Q2_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0412b56d9f657e34c3ef91d688270a4f1a1b982e96c3f93a6f350907c07622b7
3
+ size 9292149824
Devstral-Small-2505-UD-Q3_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b916e3fa19f7d398461e8503f431dce47a9040e56acc922e32a65be67d586e3e
3
+ size 11850880064
Devstral-Small-2505-UD-Q4_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8d48447e4de4c6ffab551d77c48d0898b50ea5d2b7f71ebf48332a7cb58c9a6
3
+ size 14548874304
Devstral-Small-2505-UD-Q5_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a0bd5565982dfc837dced0dcab5d9f923b912eb5707bdc2bd441d94de9dbe02
3
+ size 16788116544
README.md CHANGED
@@ -25,43 +25,17 @@ language:
25
  - hi
26
  - bn
27
  license: apache-2.0
 
28
  inference: false
29
  base_model:
30
- - mistralai/Devstral-Small-2505
31
  extra_gated_description: >-
32
  If you want to learn more about how we process your personal data, please read
33
  our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
34
  pipeline_tag: text2text-generation
35
  ---
36
- <div>
37
- <p style="margin-bottom: 0; margin-top: 0;">
38
- <strong>See <a href="https://huggingface.co/collections/unsloth/mistral-small-3-all-versions-679fe9a4722f40d61cfe627c">our collection</a> for all versions of Mistral 3.1 including GGUF, 4-bit & 16-bit formats.</strong>
39
- </p>
40
- <p style="margin-bottom: 0;">
41
- <em>Learn to run Devstral correctly - <a href="https://docs.unsloth.ai/basics/devstral">Read our Guide</a>.</em>
42
- </p>
43
- <p style="margin-top: 0;margin-bottom: 0;">
44
- <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
45
- </p>
46
- <div style="display: flex; gap: 5px; align-items: center; ">
47
- <a href="https://github.com/unslothai/unsloth/">
48
- <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
49
- </a>
50
- <a href="https://discord.gg/unsloth">
51
- <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
52
- </a>
53
- <a href="https://docs.unsloth.ai/basics/devstral">
54
- <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
55
- </a>
56
- </div>
57
- <h1 style="margin-top: 0rem;">✨ Run & Fine-tune Devstral with Unsloth!</h1>
58
- </div>
59
-
60
- - Fine-tune Mistral v0.3 (7B)) for free using our Google [Colab notebook here](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb)!
61
- - Read our Blog about Devstral support: [docs.unsloth.ai/basics/devstral](https://docs.unsloth.ai/basics/devstral)
62
- - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
63
-
64
- # Devstrall-Small-2505
65
 
66
  Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) 🙌. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positionates it as the #1 open source model on this [benchmark](#benchmark-results).
67
 
@@ -80,6 +54,7 @@ Learn more about Devstral in our [blog post](https://mistral.ai/news/devstral).
80
  - **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size.
81
 
82
 
 
83
  ## Benchmark Results
84
 
85
  ### SWE-Bench
@@ -96,7 +71,7 @@ Devstral achieves a score of 46.8% on SWE-Bench Verified, outperforming prior op
96
 
97
  When evaluated under the same test scaffold (OpenHands, provided by All Hands AI 🙌), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B.
98
 
99
- ![SWE Benchmark](https://huggingface.co/mistralai/Devstral-Small-2505/resolve/main/assets/swe_bench.png)
100
 
101
  ## Usage
102
 
@@ -127,13 +102,34 @@ docker run -it --rm --pull=always \
127
 
128
  ### Local inference
129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  The model can also be deployed with the following libraries:
131
- - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended)
 
 
132
  - [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference)
133
  - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
134
- - [`LMStudio`](https://lmstudio.ai/): See [here](#lmstudio)
135
- - [`ollama`](https://github.com/ollama/ollama): See [here](#ollama)
136
-
137
 
138
  ### OpenHands (recommended)
139
 
@@ -221,6 +217,43 @@ Enjoy building with Devstral Small and OpenHands!
221
  </details>
222
 
223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224
  ### vLLM (recommended)
225
 
226
  We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
@@ -234,7 +267,7 @@ Make sure you install [`vLLM >= 0.8.5`](https://github.com/vllm-project/vllm/rel
234
  pip install vllm --upgrade
235
  ```
236
 
237
- Doing so should automatically install [`mistral_common >= 1.5.5`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.5).
238
 
239
  To check:
240
  ```
@@ -282,7 +315,7 @@ messages = [
282
  "content": [
283
  {
284
  "type": "text",
285
- "text": "<your-command>",
286
  },
287
  ],
288
  },
@@ -294,6 +327,97 @@ response = requests.post(url, headers=headers, data=json.dumps(data))
294
  print(response.json()["choices"][0]["message"]["content"])
295
  ```
296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
  ### Mistral-inference
298
 
299
  We recommend using mistral-inference to quickly try out / "vibe-check" Devstral.
@@ -326,7 +450,47 @@ You can run the model using the following command:
326
  mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300
327
  ```
328
 
329
- You can then prompt it with anything you'd like.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330
 
331
  ### Transformers
332
 
@@ -368,7 +532,7 @@ tokenized = tokenizer.encode_chat_completion(
368
  ChatCompletionRequest(
369
  messages=[
370
  SystemMessage(content=SYSTEM_PROMPT),
371
- UserMessage(content="<your-command>"),
372
  ],
373
  )
374
  )
@@ -381,49 +545,3 @@ output = model.generate(
381
  decoded_output = tokenizer.decode(output[len(tokenized.tokens):])
382
  print(decoded_output)
383
  ```
384
-
385
- ### LMStudio
386
- Download the weights from huggingface:
387
-
388
- ```
389
- pip install -U "huggingface_hub[cli]"
390
- huggingface-cli download \
391
- "mistralai/Devstral-Small-2505_gguf" \
392
- --include "devstralQ4_K_M.gguf" \
393
- --local-dir "mistralai/Devstral-Small-2505_gguf/"
394
- ```
395
-
396
- You can serve the model locally with [LMStudio](https://lmstudio.ai/).
397
- * Download [LM Studio](https://lmstudio.ai/) and install it
398
- * Install `lms cli ~/.lmstudio/bin/lms bootstrap`
399
- * In a bash terminal, run `lms import devstralQ4_K_M.gguf` in the directory where you've downloaded the model checkpoint (e.g. `mistralai/Devstral-Small-2505_gguf`)
400
- * Open the LMStudio application, click the terminal icon to get into the developer tab. Click select a model to load and select Devstral Q4 K M. Toggle the status button to start the model, in setting oggle Serve on Local Network to be on.
401
- * On the right tab, you will see an API identifier which should be devstralq4_k_m and an api address under API Usage. Keep note of this address, we will use it in the next step.
402
-
403
- Launch Openhands
404
- You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker
405
-
406
- ```bash
407
- docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik
408
- docker run -it --rm --pull=always \
409
- -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \
410
- -e LOG_ALL_EVENTS=true \
411
- -v /var/run/docker.sock:/var/run/docker.sock \
412
- -v ~/.openhands-state:/.openhands-state \
413
- -p 3000:3000 \
414
- --add-host host.docker.internal:host-gateway \
415
- --name openhands-app \
416
- docker.all-hands.dev/all-hands-ai/openhands:0.38
417
- ```
418
-
419
- Click “see advanced setting” on the second line.
420
- In the new tab, toggle advanced to on. Set the custom model to be mistral/devstralq4_k_m and Base URL the api address we get from the last step in LM Studio. Set API Key to dummy. Click save changes.
421
-
422
-
423
- ### Ollama
424
-
425
- You can run Devstral using the [Ollama](https://ollama.ai/) CLI.
426
-
427
- ```bash
428
- ollama run devstral
429
- ```
 
25
  - hi
26
  - bn
27
  license: apache-2.0
28
+ library_name: vllm
29
  inference: false
30
  base_model:
31
+ - mistralai/Devstrall-Small-2505
32
  extra_gated_description: >-
33
  If you want to learn more about how we process your personal data, please read
34
  our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
35
  pipeline_tag: text2text-generation
36
  ---
37
+
38
+ # Model Card for mistralai/Devstrall-Small-2505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) 🙌. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positionates it as the #1 open source model on this [benchmark](#benchmark-results).
41
 
 
54
  - **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size.
55
 
56
 
57
+
58
  ## Benchmark Results
59
 
60
  ### SWE-Bench
 
71
 
72
  When evaluated under the same test scaffold (OpenHands, provided by All Hands AI 🙌), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B.
73
 
74
+ ![SWE Benchmark](assets/swe_bench.png)
75
 
76
  ## Usage
77
 
 
102
 
103
  ### Local inference
104
 
105
+ You can also run the model locally. It can be done with LMStudio or other providers listed below.
106
+
107
+ Launch Openhands
108
+ You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker
109
+
110
+ ```bash
111
+ docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik
112
+ docker run -it --rm --pull=always \
113
+ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \
114
+ -e LOG_ALL_EVENTS=true \
115
+ -v /var/run/docker.sock:/var/run/docker.sock \
116
+ -v ~/.openhands-state:/.openhands-state \
117
+ -p 3000:3000 \
118
+ --add-host host.docker.internal:host-gateway \
119
+ --name openhands-app \
120
+ docker.all-hands.dev/all-hands-ai/openhands:0.38
121
+ ```
122
+
123
+ The server will start at http://0.0.0.0:3000. Open it in your browser and you will see a tab AI Provider Configuration.
124
+ Now you can start a new conversation with the agent by clicking on the plus sign on the left bar.
125
+
126
+
127
  The model can also be deployed with the following libraries:
128
+ - [`LMStudio (recommended for quantized model)`](https://lmstudio.ai/): See [here](#lmstudio)
129
+ - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm)
130
+ - [`ollama`](https://github.com/ollama/ollama): See [here](#ollama)
131
  - [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference)
132
  - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
 
 
 
133
 
134
  ### OpenHands (recommended)
135
 
 
217
  </details>
218
 
219
 
220
+ ### LMStudio (recommended for quantized model)
221
+ Download the weights from huggingface:
222
+
223
+ ```
224
+ pip install -U "huggingface_hub[cli]"
225
+ huggingface-cli download \
226
+ "mistralai/Devstral-Small-2505_gguf" \
227
+ --include "devstralQ4_K_M.gguf" \
228
+ --local-dir "mistralai/Devstral-Small-2505_gguf/"
229
+ ```
230
+
231
+ You can serve the model locally with [LMStudio](https://lmstudio.ai/).
232
+ * Download [LM Studio](https://lmstudio.ai/) and install it
233
+ * Install `lms cli ~/.lmstudio/bin/lms bootstrap`
234
+ * In a bash terminal, run `lms import devstralQ4_K_M.ggu` in the directory where you've downloaded the model checkpoint (e.g. `mistralai/Devstral-Small-2505_gguf`)
235
+ * Open the LMStudio application, click the terminal icon to get into the developer tab. Click select a model to load and select Devstral Q4 K M. Toggle the status button to start the model, in setting oggle Serve on Local Network to be on.
236
+ * On the right tab, you will see an API identifier which should be devstralq4_k_m and an api address under API Usage. Keep note of this address, we will use it in the next step.
237
+
238
+ Launch Openhands
239
+ You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker
240
+
241
+ ```bash
242
+ docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik
243
+ docker run -it --rm --pull=always \
244
+ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \
245
+ -e LOG_ALL_EVENTS=true \
246
+ -v /var/run/docker.sock:/var/run/docker.sock \
247
+ -v ~/.openhands-state:/.openhands-state \
248
+ -p 3000:3000 \
249
+ --add-host host.docker.internal:host-gateway \
250
+ --name openhands-app \
251
+ docker.all-hands.dev/all-hands-ai/openhands:0.38
252
+ ```
253
+
254
+ Click “see advanced setting” on the second line.
255
+ In the new tab, toggle advanced to on. Set the custom model to be mistral/devstralq4_k_m and Base URL the api address we get from the last step in LM Studio. Set API Key to dummy. Click save changes.
256
+
257
  ### vLLM (recommended)
258
 
259
  We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
 
267
  pip install vllm --upgrade
268
  ```
269
 
270
+ Doing so should automatically install [`mistral_common >= 1.5.4`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.4).
271
 
272
  To check:
273
  ```
 
315
  "content": [
316
  {
317
  "type": "text",
318
+ "text": "Write a function that computes fibonacci in Python.",
319
  },
320
  ],
321
  },
 
327
  print(response.json()["choices"][0]["message"]["content"])
328
  ```
329
 
330
+ <details>
331
+ <summary>Output</summary>
332
+
333
+ Certainly! The Fibonacci sequence is a series of numbers where each number is the sum of the two preceding ones, usually starting with 0 and 1. Here's a simple Python function to compute the Fibonacci sequence:
334
+
335
+ ### Iterative Approach
336
+ This approach uses a loop to compute the Fibonacci number iteratively.
337
+
338
+ ```python
339
+ def fibonacci(n):
340
+ if n <= 0:
341
+ return "Input should be a positive integer."
342
+ elif n == 1:
343
+ return 0
344
+ elif n == 2:
345
+ return 1
346
+
347
+ a, b = 0, 1
348
+ for _ in range(2, n):
349
+ a, b = b, a + b
350
+ return b
351
+
352
+ # Example usage:
353
+ print(fibonacci(10)) # Output: 34
354
+ ```
355
+
356
+ ### Recursive Approach
357
+ This approach uses recursion to compute the Fibonacci number. Note that this is less efficient for large `n` due to repeated calculations.
358
+
359
+ ```python
360
+ def fibonacci_recursive(n):
361
+ if n <= 0:
362
+ return "Input should be a positive integer."
363
+ elif n == 1:
364
+ return 0
365
+ elif n == 2:
366
+ return 1
367
+ else:
368
+ return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)
369
+
370
+ # Example usage:
371
+ print(fibonacci_recursive(10)) # Output: 34
372
+ ```
373
+
374
+ \### Memoization Approach
375
+ This approach uses memoization to store previously computed Fibonacci numbers, making it more efficient than the simple recursive approach.
376
+
377
+ ```python
378
+ def fibonacci_memo(n, memo={}):
379
+ if n <= 0:
380
+ return "Input should be a positive integer."
381
+ elif n == 1:
382
+ return 0
383
+ elif n == 2:
384
+ return 1
385
+ elif n in memo:
386
+ return memo[n]
387
+
388
+ memo[n] = fibonacci_memo(n - 1, memo) + fibonacci_memo(n - 2, memo)
389
+ return memo[n]
390
+
391
+ # Example usage:
392
+ print(fibonacci_memo(10)) # Output: 34
393
+ ```
394
+
395
+ \### Dynamic Programming Approach
396
+ This approach uses an array to store the Fibonacci numbers up to `n`.
397
+
398
+ ```python
399
+ def fibonacci_dp(n):
400
+ if n <= 0:
401
+ return "Input should be a positive integer."
402
+ elif n == 1:
403
+ return 0
404
+ elif n == 2:
405
+ return 1
406
+
407
+ fib = [0, 1] + [0] * (n - 2)
408
+ for i in range(2, n):
409
+ fib[i] = fib[i - 1] + fib[i - 2]
410
+ return fib[n - 1]
411
+
412
+ # Example usage:
413
+ print(fibonacci_dp(10)) # Output: 34
414
+ ```
415
+
416
+ You can choose any of these approaches based on your needs. The iterative and dynamic programming approaches are generally more efficient for larger values of `n`.
417
+
418
+ </details>
419
+
420
+
421
  ### Mistral-inference
422
 
423
  We recommend using mistral-inference to quickly try out / "vibe-check" Devstral.
 
450
  mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300
451
  ```
452
 
453
+ If you prompt it with "Write me a unique and efficient function that computes fibonacci in Python", the model should generate something along the following lines:
454
+
455
+ <details>
456
+ <summary>Output</summary>
457
+
458
+ Certainly! A common and efficient way to compute Fibonacci numbers is by using memoization to store previously computed values. This avoids redundant calculations and significantly improves performance. Below is a Python function that uses memoization to compute Fibonacci numbers efficiently:
459
+
460
+ ```python
461
+ def fibonacci(n, memo=None):
462
+ if memo is None:
463
+ memo = {}
464
+
465
+ if n in memo:
466
+ return memo[n]
467
+
468
+ if n <= 1:
469
+ return n
470
+
471
+ memo[n] = fibonacci(n - 1, memo) + fibonacci(n - 2, memo)
472
+ return memo[n]
473
+
474
+ # Example usage:
475
+ n = 10
476
+ print(f"Fibonacci number at position {n} is {fibonacci(n)}")
477
+ ```
478
+
479
+ ### Explanation:
480
+
481
+ 1. **Base Case**: If `n` is 0 or 1, the function returns `n` because the Fibonacci sequence starts with 0 and 1.
482
+ 2. **Memoization**: The function uses a dictionary `memo` to store the results of previously computed Fibonacci numbers.
483
+ 3. **Recursive Case**: For other values of `n`, the function recursively computes the Fibonacci number by summing the results of `fibonacci(n - 1)` and `fibonacci(n)`
484
+
485
+ </details>
486
+
487
+ ### Ollama
488
+
489
+ You can run Devstral using the [Ollama](https://ollama.ai/) CLI.
490
+
491
+ ```bash
492
+ ollama run devstral
493
+ ```
494
 
495
  ### Transformers
496
 
 
532
  ChatCompletionRequest(
533
  messages=[
534
  SystemMessage(content=SYSTEM_PROMPT),
535
+ UserMessage(content="Write me a function that computes fibonacci in Python."),
536
  ],
537
  )
538
  )
 
545
  decoded_output = tokenizer.decode(output[len(tokenized.tokens):])
546
  print(decoded_output)
547
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MistralForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 32768,
13
+ "max_position_embeddings": 131072,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 40,
17
+ "num_key_value_heads": 8,
18
+ "pad_token_id": 11,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.52.1",
25
+ "unsloth_fixed": true,
26
+ "use_cache": true,
27
+ "vocab_size": 131072
28
+ }