danielhanchen commited on
Commit
aa9454d
·
verified ·
1 Parent(s): 7f69245

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Qwen2.5-Omni-3B-UD-IQ1_S.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Qwen2.5-Omni-3B-UD-Q2_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Qwen2.5-Omni-3B-UD-Q3_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Qwen2.5-Omni-3B-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Qwen2.5-Omni-3B-UD-Q4_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Qwen2.5-Omni-3B-UD-Q5_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
42
+ mmproj-F16.gguf filter=lfs diff=lfs merge=lfs -text
43
+ mmproj-F32.gguf filter=lfs diff=lfs merge=lfs -text
Qwen2.5-Omni-3B-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f08c5521bb08f95f679b8978625863f71677e368ccc872e8debad7789794ec95
3
+ size 2104932384
Qwen2.5-Omni-3B-UD-IQ1_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b43986aab05e9b55f618deb6d6f30417538705c7dc019af08b0d86dae8b1aab3
3
+ size 960038944
Qwen2.5-Omni-3B-UD-Q2_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:572c640e48f757eb451fa1e643a9c1b89f5281bf4f889cb723d3b73622f28174
3
+ size 1485096992
Qwen2.5-Omni-3B-UD-Q3_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56fd12554730f82648f70f2d7e3fe8a59cad43bc05f30bb0cf02e3a54f5a8242
3
+ size 1805875232
Qwen2.5-Omni-3B-UD-Q4_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf8b6a4763ba7512674f3b0c8ec3b8f83d7d206fec8693aada331a87a6516445
3
+ size 2133178400
Qwen2.5-Omni-3B-UD-Q5_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59e9ac0814b970bd1e76a84d3dbe4ba929bda90ccaf5769bcced881bd8544b52
3
+ size 2441410592
README.md ADDED
@@ -0,0 +1,1003 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - Qwen/Qwen2.5-Omni-3B
4
+ license: other
5
+ license_name: qwen-research
6
+ license_link: LICENSE
7
+ language:
8
+ - en
9
+ tags:
10
+ - multimodal
11
+ - unsloth
12
+ library_name: transformers
13
+ pipeline_tag: any-to-any
14
+ ---
15
+ <div>
16
+ <p style="margin-top: 0;margin-bottom: 0;">
17
+ <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
18
+ </p>
19
+ <div style="display: flex; gap: 5px; align-items: center; ">
20
+ <a href="https://github.com/unslothai/unsloth/">
21
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
22
+ </a>
23
+ <a href="https://discord.gg/unsloth">
24
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
25
+ </a>
26
+ <a href="https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune">
27
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
28
+ </a>
29
+ </div>
30
+ </div>
31
+
32
+
33
+ # Qwen2.5-Omni
34
+ <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
35
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
36
+ </a>
37
+
38
+
39
+ ## Overview
40
+ ### Introduction
41
+ Qwen2.5-Omni is an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner.
42
+
43
+ <p align="center">
44
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/qwen_omni.png" width="80%"/>
45
+ <p>
46
+
47
+ ### Key Features
48
+
49
+ * **Omni and Novel Architecture**: We propose Thinker-Talker architecture, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. We propose a novel position embedding, named TMRoPE (Time-aligned Multimodal RoPE), to synchronize the timestamps of video inputs with audio.
50
+
51
+ * **Real-Time Voice and Video Chat**: Architecture designed for fully real-time interactions, supporting chunked input and immediate output.
52
+
53
+ * **Natural and Robust Speech Generation**: Surpassing many existing streaming and non-streaming alternatives, demonstrating superior robustness and naturalness in speech generation.
54
+
55
+ * **Strong Performance Across Modalities**: Exhibiting exceptional performance across all modalities when benchmarked against similarly sized single-modality models. Qwen2.5-Omni outperforms the similarly sized Qwen2-Audio in audio capabilities and achieves comparable performance to Qwen2.5-VL-7B.
56
+
57
+ * **Excellent End-to-End Speech Instruction Following**: Qwen2.5-Omni shows performance in end-to-end speech instruction following that rivals its effectiveness with text inputs, evidenced by benchmarks such as MMLU and GSM8K.
58
+
59
+ ### Model Architecture
60
+
61
+ <p align="center">
62
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/overview.png" width="80%"/>
63
+ <p>
64
+
65
+ ### Performance
66
+
67
+ We conducted a comprehensive evaluation of Qwen2.5-Omni, which demonstrates strong performance across all modalities when compared to similarly sized single-modality models and closed-source models like Qwen2.5-VL-7B, Qwen2-Audio, and Gemini-1.5-pro. In tasks requiring the integration of multiple modalities, such as OmniBench, Qwen2.5-Omni achieves state-of-the-art performance. Furthermore, in single-modality tasks, it excels in areas including speech recognition (Common Voice), translation (CoVoST2), audio understanding (MMAU), image reasoning (MMMU, MMStar), video understanding (MVBench), and speech generation (Seed-tts-eval and subjective naturalness).
68
+
69
+ <p align="center">
70
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/bar.png" width="80%"/>
71
+ <p>
72
+
73
+ <details>
74
+ <summary>Multimodality -> Text</summary>
75
+
76
+ <table class="tg"><thead>
77
+ <tr>
78
+ <th class="tg-0lax">Datasets</th>
79
+ <th class="tg-0lax">Model</th>
80
+ <th class="tg-0lax">Performance</th>
81
+ </tr></thead>
82
+ <tbody>
83
+ <tr>
84
+ <td class="tg-0lax" rowspan="10">OmniBench<br>Speech | Sound Event | Music | Avg</td>
85
+ <td class="tg-0lax">Gemini-1.5-Pro</td>
86
+ <td class="tg-0lax">42.67%|42.26%|46.23%|42.91%</td>
87
+ </tr>
88
+ <tr>
89
+ <td class="tg-0lax">MIO-Instruct</td>
90
+ <td class="tg-0lax">36.96%|33.58%|11.32%|33.80%</td>
91
+ </tr>
92
+ <tr>
93
+ <td class="tg-0lax">AnyGPT (7B)</td>
94
+ <td class="tg-0lax">17.77%|20.75%|13.21%|18.04%</td>
95
+ </tr>
96
+ <tr>
97
+ <td class="tg-0lax">video-SALMONN</td>
98
+ <td class="tg-0lax">34.11%|31.70%|<strong>56.60%</strong>|35.64%</td>
99
+ </tr>
100
+ <tr>
101
+ <td class="tg-0lax">UnifiedIO2-xlarge</td>
102
+ <td class="tg-0lax">39.56%|36.98%|29.25%|38.00%</td>
103
+ </tr>
104
+ <tr>
105
+ <td class="tg-0lax">UnifiedIO2-xxlarge</td>
106
+ <td class="tg-0lax">34.24%|36.98%|24.53%|33.98%</td>
107
+ </tr>
108
+ <tr>
109
+ <td class="tg-0lax">MiniCPM-o</td>
110
+ <td class="tg-0lax">-|-|-|40.50%</td>
111
+ </tr>
112
+ <tr>
113
+ <td class="tg-0lax">Baichuan-Omni-1.5</td>
114
+ <td class="tg-0lax">-|-|-|42.90%</td>
115
+ </tr>
116
+ <tr>
117
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
118
+ <td class="tg-0lax">52.14%|52.08%|52.83%|52.19%</td>
119
+ </tr>
120
+ <tr>
121
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
122
+ <td class="tg-0lax"><strong>55.25%</strong>|<strong>60.00%</strong>|52.83%|<strong>56.13%</strong></td>
123
+ </tr>
124
+ </tbody></table>
125
+ </details>
126
+
127
+
128
+ <details>
129
+ <summary>Audio -> Text</summary>
130
+
131
+
132
+ <table class="tg"><thead>
133
+ <tr>
134
+ <th class="tg-0lax">Datasets</th>
135
+ <th class="tg-0lax">Model</th>
136
+ <th class="tg-0lax">Performance</th>
137
+ </tr></thead>
138
+ <tbody>
139
+ <tr>
140
+ <td class="tg-9j4x" colspan="3">ASR</td>
141
+ </tr>
142
+ <tr>
143
+ <td class="tg-0lax" rowspan="12">Librispeech<br>dev-clean | dev other | test-clean | test-other</td>
144
+ <td class="tg-0lax">SALMONN</td>
145
+ <td class="tg-0lax">-|-|2.1|4.9</td>
146
+ </tr>
147
+ <tr>
148
+ <td class="tg-0lax">SpeechVerse</td>
149
+ <td class="tg-0lax">-|-|2.1|4.4</td>
150
+ </tr>
151
+ <tr>
152
+ <td class="tg-0lax">Whisper-large-v3</td>
153
+ <td class="tg-0lax">-|-|1.8|3.6</td>
154
+ </tr>
155
+ <tr>
156
+ <td class="tg-0lax">Llama-3-8B</td>
157
+ <td class="tg-0lax">-|-|-|3.4</td>
158
+ </tr>
159
+ <tr>
160
+ <td class="tg-0lax">Llama-3-70B</td>
161
+ <td class="tg-0lax">-|-|-|3.1</td>
162
+ </tr>
163
+ <tr>
164
+ <td class="tg-0lax">Seed-ASR-Multilingual</td>
165
+ <td class="tg-0lax">-|-|<strong>1.6</strong>|<strong>2.8</strong></td>
166
+ </tr>
167
+ <tr>
168
+ <td class="tg-0lax">MiniCPM-o</td>
169
+ <td class="tg-0lax">-|-|1.7|-</td>
170
+ </tr>
171
+ <tr>
172
+ <td class="tg-0lax">MinMo</td>
173
+ <td class="tg-0lax">-|-|1.7|3.9</td>
174
+ </tr>
175
+ <tr>
176
+ <td class="tg-0lax">Qwen-Audio</td>
177
+ <td class="tg-0lax">1.8|4.0|2.0|4.2</td>
178
+ </tr>
179
+ <tr>
180
+ <td class="tg-0lax">Qwen2-Audio</td>
181
+ <td class="tg-0lax"><strong>1.3</strong>|<strong>3.4</strong>|<strong>1.6</strong>|3.6</td>
182
+ </tr>
183
+ <tr>
184
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
185
+ <td class="tg-0lax">2.0|4.1|2.2|4.5</td>
186
+ </tr>
187
+ <tr>
188
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
189
+ <td class="tg-0lax">1.6|3.5|1.8|3.4</td>
190
+ </tr>
191
+ <tr>
192
+ <td class="tg-0lax" rowspan="5">Common Voice 15<br>en | zh | yue | fr</td>
193
+ <td class="tg-0lax">Whisper-large-v3</td>
194
+ <td class="tg-0lax">9.3|12.8|10.9|10.8</td>
195
+ </tr>
196
+ <tr>
197
+ <td class="tg-0lax">MinMo</td>
198
+ <td class="tg-0lax">7.9|6.3|6.4|8.5</td>
199
+ </tr>
200
+ <tr>
201
+ <td class="tg-0lax">Qwen2-Audio</td>
202
+ <td class="tg-0lax">8.6|6.9|<strong>5.9</strong>|9.6</td>
203
+ </tr>
204
+ <tr>
205
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
206
+ <td class="tg-0lax">9.1|6.0|11.6|9.6</td>
207
+ </tr>
208
+ <tr>
209
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
210
+ <td class="tg-0lax"><strong>7.6</strong>|<strong>5.2</strong>|7.3|<strong>7.5</strong></td>
211
+ </tr>
212
+ <tr>
213
+ <td class="tg-0lax" rowspan="8">Fleurs<br>zh | en</td>
214
+ <td class="tg-0lax">Whisper-large-v3</td>
215
+ <td class="tg-0lax">7.7|4.1</td>
216
+ </tr>
217
+ <tr>
218
+ <td class="tg-0lax">Seed-ASR-Multilingual</td>
219
+ <td class="tg-0lax">-|<strong>3.4</strong></td>
220
+ </tr>
221
+ <tr>
222
+ <td class="tg-0lax">Megrez-3B-Omni</td>
223
+ <td class="tg-0lax">10.8|-</td>
224
+ </tr>
225
+ <tr>
226
+ <td class="tg-0lax">MiniCPM-o</td>
227
+ <td class="tg-0lax">4.4|-</td>
228
+ </tr>
229
+ <tr>
230
+ <td class="tg-0lax">MinMo</td>
231
+ <td class="tg-0lax">3.0|3.8</td>
232
+ </tr>
233
+ <tr>
234
+ <td class="tg-0lax">Qwen2-Audio</td>
235
+ <td class="tg-0lax">7.5|-</td>
236
+ </tr>
237
+ <tr>
238
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
239
+ <td class="tg-0lax">3.2|5.4</td>
240
+ </tr>
241
+ <tr>
242
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
243
+ <td class="tg-0lax"><strong>3.0</strong>|4.1</td>
244
+ </tr>
245
+ <tr>
246
+ <td class="tg-0lax" rowspan="6">Wenetspeech<br>test-net | test-meeting</td>
247
+ <td class="tg-0lax">Seed-ASR-Chinese</td>
248
+ <td class="tg-0lax"><strong>4.7|5.7</strong></td>
249
+ </tr>
250
+ <tr>
251
+ <td class="tg-0lax">Megrez-3B-Omni</td>
252
+ <td class="tg-0lax">-|16.4</td>
253
+ </tr>
254
+ <tr>
255
+ <td class="tg-0lax">MiniCPM-o</td>
256
+ <td class="tg-0lax">6.9|-</td>
257
+ </tr>
258
+ <tr>
259
+ <td class="tg-0lax">MinMo</td>
260
+ <td class="tg-0lax">6.8|7.4</td>
261
+ </tr>
262
+ <tr>
263
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
264
+ <td class="tg-0lax">6.3|8.1</td>
265
+ </tr>
266
+ <tr>
267
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
268
+ <td class="tg-0lax">5.9|7.7</td>
269
+ </tr>
270
+ <tr>
271
+ <td class="tg-0lax" rowspan="4">Voxpopuli-V1.0-en</td>
272
+ <td class="tg-0lax">Llama-3-8B</td>
273
+ <td class="tg-0lax">6.2</td>
274
+ </tr>
275
+ <tr>
276
+ <td class="tg-0lax">Llama-3-70B</td>
277
+ <td class="tg-0lax"><strong>5.7</strong></td>
278
+ </tr>
279
+ <tr>
280
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
281
+ <td class="tg-0lax">6.6</td>
282
+ </tr>
283
+ <tr>
284
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
285
+ <td class="tg-0lax">5.8</td>
286
+ </tr>
287
+ <tr>
288
+ <td class="tg-9j4x" colspan="3">S2TT</td>
289
+ </tr>
290
+ <tr>
291
+ <td class="tg-0lax" rowspan="9">CoVoST2<br>en-de | de-en | en-zh | zh-en</td>
292
+ <td class="tg-0lax">SALMONN</td>
293
+ <td class="tg-0lax">18.6|-|33.1|-</td>
294
+ </tr>
295
+ <tr>
296
+ <td class="tg-0lax">SpeechLLaMA</td>
297
+ <td class="tg-0lax">-|27.1|-|12.3</td>
298
+ </tr>
299
+ <tr>
300
+ <td class="tg-0lax">BLSP</td>
301
+ <td class="tg-0lax">14.1|-|-|-</td>
302
+ </tr>
303
+ <tr>
304
+ <td class="tg-0lax">MiniCPM-o</td>
305
+ <td class="tg-0lax">-|-|<strong>48.2</strong>|27.2</td>
306
+ </tr>
307
+ <tr>
308
+ <td class="tg-0lax">MinMo</td>
309
+ <td class="tg-0lax">-|<strong>39.9</strong>|46.7|26.0</td>
310
+ </tr>
311
+ <tr>
312
+ <td class="tg-0lax">Qwen-Audio</td>
313
+ <td class="tg-0lax">25.1|33.9|41.5|15.7</td>
314
+ </tr>
315
+ <tr>
316
+ <td class="tg-0lax">Qwen2-Audio</td>
317
+ <td class="tg-0lax">29.9|35.2|45.2|24.4</td>
318
+ </tr>
319
+ <tr>
320
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
321
+ <td class="tg-0lax">28.3|38.1|41.4|26.6</td>
322
+ </tr>
323
+ <tr>
324
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
325
+ <td class="tg-0lax"><strong>30.2</strong>|37.7|41.4|<strong>29.4</strong></td>
326
+ </tr>
327
+ <tr>
328
+ <td class="tg-9j4x" colspan="3">SER</td>
329
+ </tr>
330
+ <tr>
331
+ <td class="tg-0lax" rowspan="6">Meld</td>
332
+ <td class="tg-0lax">WavLM-large</td>
333
+ <td class="tg-0lax">0.542</td>
334
+ </tr>
335
+ <tr>
336
+ <td class="tg-0lax">MiniCPM-o</td>
337
+ <td class="tg-0lax">0.524</td>
338
+ </tr>
339
+ <tr>
340
+ <td class="tg-0lax">Qwen-Audio</td>
341
+ <td class="tg-0lax">0.557</td>
342
+ </tr>
343
+ <tr>
344
+ <td class="tg-0lax">Qwen2-Audio</td>
345
+ <td class="tg-0lax">0.553</td>
346
+ </tr>
347
+ <tr>
348
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
349
+ <td class="tg-0lax">0.558</td>
350
+ </tr>
351
+ <tr>
352
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
353
+ <td class="tg-0lax"><strong>0.570</strong></td>
354
+ </tr>
355
+ <tr>
356
+ <td class="tg-9j4x" colspan="3">VSC</td>
357
+ </tr>
358
+ <tr>
359
+ <td class="tg-0lax" rowspan="6">VocalSound</td>
360
+ <td class="tg-0lax">CLAP</td>
361
+ <td class="tg-0lax">0.495</td>
362
+ </tr>
363
+ <tr>
364
+ <td class="tg-0lax">Pengi</td>
365
+ <td class="tg-0lax">0.604</td>
366
+ </tr>
367
+ <tr>
368
+ <td class="tg-0lax">Qwen-Audio</td>
369
+ <td class="tg-0lax">0.929</td>
370
+ </tr>
371
+ <tr>
372
+ <td class="tg-0lax">Qwen2-Audio</td>
373
+ <td class="tg-0lax"><strong>0.939</strong></td>
374
+ </tr>
375
+ <tr>
376
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
377
+ <td class="tg-0lax">0.936</td>
378
+ </tr>
379
+ <tr>
380
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
381
+ <td class="tg-0lax"><strong>0.939</strong></td>
382
+ </tr>
383
+ <tr>
384
+ <td class="tg-9j4x" colspan="3">Music</td>
385
+ </tr>
386
+ <tr>
387
+ <td class="tg-0lax" rowspan="3">GiantSteps Tempo</td>
388
+ <td class="tg-0lax">Llark-7B</td>
389
+ <td class="tg-0lax">0.86</td>
390
+ </tr>
391
+ <tr>
392
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
393
+ <td class="tg-0lax"><strong>0.88</strong></td>
394
+ </tr>
395
+ <tr>
396
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
397
+ <td class="tg-0lax"><strong>0.88</strong></td>
398
+ </tr>
399
+ <tr>
400
+ <td class="tg-0lax" rowspan="3">MusicCaps</td>
401
+ <td class="tg-0lax">LP-MusicCaps</td>
402
+ <td class="tg-0lax">0.291|0.149|0.089|<strong>0.061</strong>|0.129|0.130</td>
403
+ </tr>
404
+ <tr>
405
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
406
+ <td class="tg-0lax">0.325|<strong>0.163</strong>|<strong>0.093</strong>|0.057|<strong>0.132</strong>|<strong>0.229</strong></td>
407
+ </tr>
408
+ <tr>
409
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
410
+ <td class="tg-0lax"><strong>0.328</strong>|0.162|0.090|0.055|0.127|0.225</td>
411
+ </tr>
412
+ <tr>
413
+ <td class="tg-9j4x" colspan="3">Audio Reasoning</td>
414
+ </tr>
415
+ <tr>
416
+ <td class="tg-0lax" rowspan="4">MMAU<br>Sound | Music | Speech | Avg</td>
417
+ <td class="tg-0lax">Gemini-Pro-V1.5</td>
418
+ <td class="tg-0lax">56.75|49.40|58.55|54.90</td>
419
+ </tr>
420
+ <tr>
421
+ <td class="tg-0lax">Qwen2-Audio</td>
422
+ <td class="tg-0lax">54.95|50.98|42.04|49.20</td>
423
+ </tr>
424
+ <tr>
425
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
426
+ <td class="tg-0lax"><strong>70.27</strong>|60.48|59.16|63.30</td>
427
+ </tr>
428
+ <tr>
429
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
430
+ <td class="tg-0lax">67.87|<strong>69.16|59.76|65.60</strong></td>
431
+ </tr>
432
+ <tr>
433
+ <td class="tg-9j4x" colspan="3">Voice Chatting</td>
434
+ </tr>
435
+ <tr>
436
+ <td class="tg-0lax" rowspan="9">VoiceBench<br>AlpacaEval | CommonEval | SD-QA | MMSU</td>
437
+ <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td>
438
+ <td class="tg-0lax"><strong>4.55</strong>|3.90|53.35|47.17</td>
439
+ </tr>
440
+ <tr>
441
+ <td class="tg-0lax">MERaLiON</td>
442
+ <td class="tg-0lax">4.50|3.77|55.06|34.95</td>
443
+ </tr>
444
+ <tr>
445
+ <td class="tg-0lax">Megrez-3B-Omni</td>
446
+ <td class="tg-0lax">3.50|2.95|25.95|27.03</td>
447
+ </tr>
448
+ <tr>
449
+ <td class="tg-0lax">Lyra-Base</td>
450
+ <td class="tg-0lax">3.85|3.50|38.25|49.74</td>
451
+ </tr>
452
+ <tr>
453
+ <td class="tg-0lax">MiniCPM-o</td>
454
+ <td class="tg-0lax">4.42|<strong>4.15</strong>|50.72|54.78</td>
455
+ </tr>
456
+ <tr>
457
+ <td class="tg-0lax">Baichuan-Omni-1.5</td>
458
+ <td class="tg-0lax">4.50|4.05|43.40|57.25</td>
459
+ </tr>
460
+ <tr>
461
+ <td class="tg-0lax">Qwen2-Audio</td>
462
+ <td class="tg-0lax">3.74|3.43|35.71|35.72</td>
463
+ </tr>
464
+ <tr>
465
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
466
+ <td class="tg-0lax">4.32|4.00|49.37|50.23</td>
467
+ </tr>
468
+ <tr>
469
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
470
+ <td class="tg-0lax">4.49|3.93|<strong>55.71</strong>|<strong>61.32</strong></td>
471
+ </tr>
472
+ <tr>
473
+ <td class="tg-0lax" rowspan="9">VoiceBench<br>OpenBookQA | IFEval | AdvBench | Avg</td>
474
+ <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td>
475
+ <td class="tg-0lax">65.27|<strong>66.88</strong>|98.46|71.45</td>
476
+ </tr>
477
+ <tr>
478
+ <td class="tg-0lax">MERaLiON</td>
479
+ <td class="tg-0lax">27.23|62.93|94.81|62.91</td>
480
+ </tr>
481
+ <tr>
482
+ <td class="tg-0lax">Megrez-3B-Omni</td>
483
+ <td class="tg-0lax">28.35|25.71|87.69|46.25</td>
484
+ </tr>
485
+ <tr>
486
+ <td class="tg-0lax">Lyra-Base</td>
487
+ <td class="tg-0lax">72.75|36.28|59.62|57.66</td>
488
+ </tr>
489
+ <tr>
490
+ <td class="tg-0lax">MiniCPM-o</td>
491
+ <td class="tg-0lax">78.02|49.25|97.69|71.69</td>
492
+ </tr>
493
+ <tr>
494
+ <td class="tg-0lax">Baichuan-Omni-1.5</td>
495
+ <td class="tg-0lax">74.51|54.54|97.31|71.14</td>
496
+ </tr>
497
+ <tr>
498
+ <td class="tg-0lax">Qwen2-Audio</td>
499
+ <td class="tg-0lax">49.45|26.33|96.73|55.35</td>
500
+ </tr>
501
+ <tr>
502
+ <td class="tg-0lax">Qwen2.5-Omni-3B</td>
503
+ <td class="tg-0lax">74.73|42.10|98.85|68.81</td>
504
+ </tr>
505
+ <tr>
506
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
507
+ <td class="tg-0lax"><strong>81.10</strong>|52.87|<strong>99.42</strong>|<strong>74.12</strong></td>
508
+ </tr>
509
+ </tbody></table>
510
+ </details>
511
+
512
+ <details>
513
+ <summary>Image -> Text</summary>
514
+
515
+ | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini |
516
+ |--------------------------------|--------------|------------|------------|---------------|-------------|
517
+ | MMMU<sub>val</sub> | 59.2 | 53.1 | 53.9 | 58.6 | **60.0** |
518
+ | MMMU-Pro<sub>overall</sub> | 36.6 | 29.7 | - | **38.3** | 37.6 |
519
+ | MathVista<sub>testmini</sub> | 67.9 | 59.4 | **71.9** | 68.2 | 52.5 |
520
+ | MathVision<sub>full</sub> | 25.0 | 20.8 | 23.1 | **25.1** | - |
521
+ | MMBench-V1.1-EN<sub>test</sub> | 81.8 | 77.8 | 80.5 | **82.6** | 76.0 |
522
+ | MMVet<sub>turbo</sub> | 66.8 | 62.1 | **67.5** | 67.1 | 66.9 |
523
+ | MMStar | **64.0** | 55.7 | **64.0** | 63.9 | 54.8 |
524
+ | MME<sub>sum</sub> | 2340 | 2117 | **2372** | 2347 | 2003 |
525
+ | MuirBench | 59.2 | 48.0 | - | **59.2** | - |
526
+ | CRPE<sub>relation</sub> | **76.5** | 73.7 | - | 76.4 | - |
527
+ | RealWorldQA<sub>avg</sub> | 70.3 | 62.6 | **71.9** | 68.5 | - |
528
+ | MME-RealWorld<sub>en</sub> | **61.6** | 55.6 | - | 57.4 | - |
529
+ | MM-MT-Bench | 6.0 | 5.0 | - | **6.3** | - |
530
+ | AI2D | 83.2 | 79.5 | **85.8** | 83.9 | - |
531
+ | TextVQA<sub>val</sub> | 84.4 | 79.8 | 83.2 | **84.9** | - |
532
+ | DocVQA<sub>test</sub> | 95.2 | 93.3 | 93.5 | **95.7** | - |
533
+ | ChartQA<sub>test Avg</sub> | 85.3 | 82.8 | 84.9 | **87.3** | - |
534
+ | OCRBench_V2<sub>en</sub> | **57.8** | 51.7 | - | 56.3 | - |
535
+
536
+
537
+ | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Qwen2.5-VL-7B | Grounding DINO | Gemini 1.5 Pro |
538
+ |--------------------------|--------------|---------------|---------------|----------------|----------------|
539
+ | Refcoco<sub>val</sub> | 90.5 | 88.7 | 90.0 | **90.6** | 73.2 |
540
+ | Refcoco<sub>textA</sub> | **93.5** | 91.8 | 92.5 | 93.2 | 72.9 |
541
+ | Refcoco<sub>textB</sub> | 86.6 | 84.0 | 85.4 | **88.2** | 74.6 |
542
+ | Refcoco+<sub>val</sub> | 85.4 | 81.1 | 84.2 | **88.2** | 62.5 |
543
+ | Refcoco+<sub>textA</sub> | **91.0** | 87.5 | 89.1 | 89.0 | 63.9 |
544
+ | Refcoco+<sub>textB</sub> | **79.3** | 73.2 | 76.9 | 75.9 | 65.0 |
545
+ | Refcocog+<sub>val</sub> | **87.4** | 85.0 | 87.2 | 86.1 | 75.2 |
546
+ | Refcocog+<sub>test</sub> | **87.9** | 85.1 | 87.2 | 87.0 | 76.2 |
547
+ | ODinW | 42.4 | 39.2 | 37.3 | **55.0** | 36.7 |
548
+ | PointGrounding | 66.5 | 46.2 | **67.3** | - | - |
549
+ </details>
550
+
551
+
552
+ <details>
553
+ <summary>Video(without audio) -> Text</summary>
554
+
555
+ | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini |
556
+ |-----------------------------|--------------|------------|------------|---------------|-------------|
557
+ | Video-MME<sub>w/o sub</sub> | 64.3 | 62.0 | 63.9 | **65.1** | 64.8 |
558
+ | Video-MME<sub>w sub</sub> | **72.4** | 68.6 | 67.9 | 71.6 | - |
559
+ | MVBench | **70.3** | 68.7 | 67.2 | 69.6 | - |
560
+ | EgoSchema<sub>test</sub> | **68.6** | 61.4 | 63.2 | 65.0 | - |
561
+ </details>
562
+
563
+ <details>
564
+ <summary>Zero-shot Speech Generation</summary>
565
+
566
+
567
+ <table class="tg"><thead>
568
+ <tr>
569
+ <th class="tg-0lax">Datasets</th>
570
+ <th class="tg-0lax">Model</th>
571
+ <th class="tg-0lax">Performance</th>
572
+ </tr></thead>
573
+ <tbody>
574
+ <tr>
575
+ <td class="tg-9j4x" colspan="3">Content Consistency</td>
576
+ </tr>
577
+ <tr>
578
+ <td class="tg-0lax" rowspan="11">SEED<br>test-zh | test-en | test-hard </td>
579
+ <td class="tg-0lax">Seed-TTS_ICL</td>
580
+ <td class="tg-0lax">1.11 | 2.24 | 7.58</td>
581
+ </tr>
582
+ <tr>
583
+ <td class="tg-0lax">Seed-TTS_RL</td>
584
+ <td class="tg-0lax"><strong>1.00</strong> | 1.94 | <strong>6.42</strong></td>
585
+ </tr>
586
+ <tr>
587
+ <td class="tg-0lax">MaskGCT</td>
588
+ <td class="tg-0lax">2.27 | 2.62 | 10.27</td>
589
+ </tr>
590
+ <tr>
591
+ <td class="tg-0lax">E2_TTS</td>
592
+ <td class="tg-0lax">1.97 | 2.19 | -</td>
593
+ </tr>
594
+ <tr>
595
+ <td class="tg-0lax">F5-TTS</td>
596
+ <td class="tg-0lax">1.56 | <strong>1.83</strong> | 8.67</td>
597
+ </tr>
598
+ <tr>
599
+ <td class="tg-0lax">CosyVoice 2</td>
600
+ <td class="tg-0lax">1.45 | 2.57 | 6.83</td>
601
+ </tr>
602
+ <tr>
603
+ <td class="tg-0lax">CosyVoice 2-S</td>
604
+ <td class="tg-0lax">1.45 | 2.38 | 8.08</td>
605
+ </tr>
606
+ <tr>
607
+ <td class="tg-0lax">Qwen2.5-Omni-3B_ICL</td>
608
+ <td class="tg-0lax">1.95 | 2.87 | 9.92</td>
609
+ </tr>
610
+ <tr>
611
+ <td class="tg-0lax">Qwen2.5-Omni-3B_RL</td>
612
+ <td class="tg-0lax">1.58 | 2.51 | 7.86</td>
613
+ </tr>
614
+ <tr>
615
+ <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td>
616
+ <td class="tg-0lax">1.70 | 2.72 | 7.97</td>
617
+ </tr>
618
+ <tr>
619
+ <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td>
620
+ <td class="tg-0lax">1.42 | 2.32 | 6.54</td>
621
+ </tr>
622
+ <tr>
623
+ <td class="tg-9j4x" colspan="3">Speaker Similarity</td>
624
+ </tr>
625
+ <tr>
626
+ <td class="tg-0lax" rowspan="11">SEED<br>test-zh | test-en | test-hard </td>
627
+ <td class="tg-0lax">Seed-TTS_ICL</td>
628
+ <td class="tg-0lax">0.796 | 0.762 | 0.776</td>
629
+ </tr>
630
+ <tr>
631
+ <td class="tg-0lax">Seed-TTS_RL</td>
632
+ <td class="tg-0lax"><strong>0.801</strong> | <strong>0.766</strong> | <strong>0.782</strong></td>
633
+ </tr>
634
+ <tr>
635
+ <td class="tg-0lax">MaskGCT</td>
636
+ <td class="tg-0lax">0.774 | 0.714 | 0.748</td>
637
+ </tr>
638
+ <tr>
639
+ <td class="tg-0lax">E2_TTS</td>
640
+ <td class="tg-0lax">0.730 | 0.710 | -</td>
641
+ </tr>
642
+ <tr>
643
+ <td class="tg-0lax">F5-TTS</td>
644
+ <td class="tg-0lax">0.741 | 0.647 | 0.713</td>
645
+ </tr>
646
+ <tr>
647
+ <td class="tg-0lax">CosyVoice 2</td>
648
+ <td class="tg-0lax">0.748 | 0.652 | 0.724</td>
649
+ </tr>
650
+ <tr>
651
+ <td class="tg-0lax">CosyVoice 2-S</td>
652
+ <td class="tg-0lax">0.753 | 0.654 | 0.732</td>
653
+ </tr>
654
+ <tr>
655
+ <td class="tg-0lax">Qwen2.5-Omni-3B_ICL</td>
656
+ <td class="tg-0lax">0.741 | 0.635 | 0.748</td>
657
+ </tr>
658
+ <tr>
659
+ <td class="tg-0lax">Qwen2.5-Omni-3B_RL</td>
660
+ <td class="tg-0lax">0.744 | 0.635 | 0.746</td>
661
+ </tr>
662
+ <tr>
663
+ <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td>
664
+ <td class="tg-0lax">0.752 | 0.632 | 0.747</td>
665
+ </tr>
666
+ <tr>
667
+ <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td>
668
+ <td class="tg-0lax">0.754 | 0.641 | 0.752</td>
669
+ </tr>
670
+ </tbody></table>
671
+ </details>
672
+
673
+ <details>
674
+ <summary>Text -> Text</summary>
675
+
676
+ | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Qwen2.5-7B | Qwen2.5-3B | Qwen2-7B | Llama3.1-8B | Gemma2-9B |
677
+ |-----------------------------------|-----------|------------|------------|------------|------------|-------------|-----------|
678
+ | MMLU-Pro | 47.0 | 40.4 | **56.3** | 43.7 | 44.1 | 48.3 | 52.1 |
679
+ | MMLU-redux | 71.0 | 60.9 | **75.4** | 64.4 | 67.3 | 67.2 | 72.8 |
680
+ | LiveBench<sub>0831</sub> | 29.6 | 22.3 | **35.9** | 26.8 | 29.2 | 26.7 | 30.6 |
681
+ | GPQA | 30.8 | 34.3 | **36.4** | 30.3 | 34.3 | 32.8 | 32.8 |
682
+ | MATH | 71.5 | 63.6 | **75.5** | 65.9 | 52.9 | 51.9 | 44.3 |
683
+ | GSM8K | 88.7 | 82.6 | **91.6** | 86.7 | 85.7 | 84.5 | 76.7 |
684
+ | HumanEval | 78.7 | 70.7 | **84.8** | 74.4 | 79.9 | 72.6 | 68.9 |
685
+ | MBPP | 73.2 | 70.4 | **79.2** | 72.7 | 67.2 | 69.6 | 74.9 |
686
+ | MultiPL-E | 65.8 | 57.6 | **70.4** | 60.2 | 59.1 | 50.7 | 53.4 |
687
+ | LiveCodeBench<sub>2305-2409</sub> | 24.6 | 16.5 | **28.7** | 19.9 | 23.9 | 8.3 | 18.9 |
688
+ </details>
689
+
690
+ ## Quickstart
691
+
692
+ Below, we provide simple examples to show how to use Qwen2.5-Omni with 🤗 Transformers. The codes of Qwen2.5-Omni has been in the latest Hugging face transformers and we advise you to build from source with command:
693
+ ```
694
+ pip uninstall transformers
695
+ pip install git+https://github.com/huggingface/transformers@v4.51.3-Qwen2.5-Omni-preview
696
+ pip install accelerate
697
+ ```
698
+ or you might encounter the following error:
699
+ ```
700
+ KeyError: 'qwen2_5_omni'
701
+ ```
702
+
703
+
704
+ We offer a toolkit to help you handle various types of audio and visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved audio, images and videos. You can install it using the following command and make sure your system has `ffmpeg` installed:
705
+
706
+ ```bash
707
+ # It's highly recommended to use `[decord]` feature for faster video loading.
708
+ pip install qwen-omni-utils[decord] -U
709
+ ```
710
+
711
+ If you are not using Linux, you might not be able to install `decord` from PyPI. In that case, you can use `pip install qwen-omni-utils -U` which will fall back to using torchvision for video processing. However, you can still [install decord from source](https://github.com/dmlc/decord?tab=readme-ov-file#install-from-source) to get decord used when loading video.
712
+
713
+ ### 🤗 Transformers Usage
714
+
715
+ Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_omni_utils`:
716
+
717
+ ```python
718
+ import soundfile as sf
719
+
720
+ from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
721
+ from qwen_omni_utils import process_mm_info
722
+
723
+ # default: Load the model on the available device(s)
724
+ model = Qwen2_5OmniForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-Omni-3B", torch_dtype="auto", device_map="auto")
725
+
726
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving.
727
+ # model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
728
+ # "Qwen/Qwen2.5-Omni-3B",
729
+ # torch_dtype="auto",
730
+ # device_map="auto",
731
+ # attn_implementation="flash_attention_2",
732
+ # )
733
+
734
+ processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-3B")
735
+
736
+ conversation = [
737
+ {
738
+ "role": "system",
739
+ "content": [
740
+ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
741
+ ],
742
+ },
743
+ {
744
+ "role": "user",
745
+ "content": [
746
+ {"type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/draw.mp4"},
747
+ ],
748
+ },
749
+ ]
750
+
751
+ # set use audio in video
752
+ USE_AUDIO_IN_VIDEO = True
753
+
754
+ # Preparation for inference
755
+ text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
756
+ audios, images, videos = process_mm_info(conversation, use_audio_in_video=USE_AUDIO_IN_VIDEO)
757
+ inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=USE_AUDIO_IN_VIDEO)
758
+ inputs = inputs.to(model.device).to(model.dtype)
759
+
760
+ # Inference: Generation of the output text and audio
761
+ text_ids, audio = model.generate(**inputs, use_audio_in_video=USE_AUDIO_IN_VIDEO)
762
+
763
+ text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
764
+ print(text)
765
+ sf.write(
766
+ "output.wav",
767
+ audio.reshape(-1).detach().cpu().numpy(),
768
+ samplerate=24000,
769
+ )
770
+ ```
771
+
772
+ <details>
773
+ <summary>Minimum GPU memory requirements</summary>
774
+
775
+ |Model | Precision | 15(s) Video | 30(s) Video | 60(s) Video |
776
+ |--------------|-----------| ------------- | ------------- | ------------------ |
777
+ | Qwen-Omni-3B | FP32 | 89.10 GB | Not Recommend | Not Recommend |
778
+ | Qwen-Omni-3B | BF16 | 18.38 GB | 22.43 GB | 28.22 GB |
779
+ | Qwen-Omni-7B | FP32 | 93.56 GB | Not Recommend | Not Recommend |
780
+ | Qwen-Omni-7B | BF16 | 31.11 GB | 41.85 GB | 60.19 GB |
781
+
782
+ Note: The table above presents the theoretical minimum memory requirements for inference with `transformers` and `BF16` is test with `attn_implementation="flash_attention_2"`; however, in practice, the actual memory usage is typically at least 1.2 times higher. For more information, see the linked resource [here](https://huggingface.co/docs/accelerate/main/en/usage_guides/model_size_estimator).
783
+ </details>
784
+
785
+ <details>
786
+ <summary>Video URL resource usage</summary>
787
+
788
+ Video URL compatibility largely depends on the third-party library version. The details are in the table below. Change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one.
789
+
790
+ | Backend | HTTP | HTTPS |
791
+ |-------------|------|-------|
792
+ | torchvision >= 0.19.0 | ✅ | ✅ |
793
+ | torchvision < 0.19.0 | ❌ | ❌ |
794
+ | decord | ✅ | ❌ |
795
+ </details>
796
+
797
+ <details>
798
+ <summary>Batch inference</summary>
799
+
800
+ The model can batch inputs composed of mixed samples of various types such as text, images, audio and videos as input when `return_audio=False` is set. Here is an example.
801
+
802
+ ```python
803
+ # Sample messages for batch inference
804
+
805
+ # Conversation with video only
806
+ conversation1 = [
807
+ {
808
+ "role": "system",
809
+ "content": [
810
+ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
811
+ ],
812
+ },
813
+ {
814
+ "role": "user",
815
+ "content": [
816
+ {"type": "video", "video": "/path/to/video.mp4"},
817
+ ]
818
+ }
819
+ ]
820
+
821
+ # Conversation with audio only
822
+ conversation2 = [
823
+ {
824
+ "role": "system",
825
+ "content": [
826
+ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
827
+ ],
828
+ },
829
+ {
830
+ "role": "user",
831
+ "content": [
832
+ {"type": "audio", "audio": "/path/to/audio.wav"},
833
+ ]
834
+ }
835
+ ]
836
+
837
+ # Conversation with pure text
838
+ conversation3 = [
839
+ {
840
+ "role": "system",
841
+ "content": [
842
+ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
843
+ ],
844
+ },
845
+ {
846
+ "role": "user",
847
+ "content": "who are you?"
848
+ }
849
+ ]
850
+
851
+
852
+ # Conversation with mixed media
853
+ conversation4 = [
854
+ {
855
+ "role": "system",
856
+ "content": [
857
+ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
858
+ ],
859
+ },
860
+ {
861
+ "role": "user",
862
+ "content": [
863
+ {"type": "image", "image": "/path/to/image.jpg"},
864
+ {"type": "video", "video": "/path/to/video.mp4"},
865
+ {"type": "audio", "audio": "/path/to/audio.wav"},
866
+ {"type": "text", "text": "What are the elements can you see and hear in these medias?"},
867
+ ],
868
+ }
869
+ ]
870
+
871
+ # Combine messages for batch processing
872
+ conversations = [conversation1, conversation2, conversation3, conversation4]
873
+
874
+ # set use audio in video
875
+ USE_AUDIO_IN_VIDEO = True
876
+
877
+ # Preparation for batch inference
878
+ text = processor.apply_chat_template(conversations, add_generation_prompt=True, tokenize=False)
879
+ audios, images, videos = process_mm_info(conversations, use_audio_in_video=USE_AUDIO_IN_VIDEO)
880
+
881
+ inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=USE_AUDIO_IN_VIDEO)
882
+ inputs = inputs.to(model.device).to(model.dtype)
883
+
884
+ # Batch Inference
885
+ text_ids = model.generate(**inputs, use_audio_in_video=USE_AUDIO_IN_VIDEO, return_audio=False)
886
+ text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
887
+ print(text)
888
+ ```
889
+ </details>
890
+
891
+ ### Usage Tips
892
+
893
+ #### Prompt for audio output
894
+ If users need audio output, the system prompt must be set as "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.", otherwise the audio output may not work as expected.
895
+ ```
896
+ {
897
+ "role": "system",
898
+ "content": [
899
+ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
900
+ ],
901
+ }
902
+ ```
903
+ #### Use audio in video
904
+ In the process of multimodal interaction, the videos provided by users are often accompanied by audio (such as questions about the content in the video, or sounds generated by certain events in the video). This information is conducive to the model providing a better interactive experience. So we provide the following options for users to decide whether to use audio in video.
905
+ ```python
906
+ # first place, in data preprocessing
907
+ audios, images, videos = process_mm_info(conversations, use_audio_in_video=True)
908
+ ```
909
+ ```python
910
+ # second place, in model processor
911
+ inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt",
912
+ padding=True, use_audio_in_video=True)
913
+ ```
914
+ ```python
915
+ # third place, in model inference
916
+ text_ids, audio = model.generate(**inputs, use_audio_in_video=True)
917
+ ```
918
+ It is worth noting that during a multi-round conversation, the `use_audio_in_video` parameter in these places must be set to the same, otherwise unexpected results will occur.
919
+
920
+ #### Use audio output or not
921
+
922
+ The model supports both text and audio outputs, if users do not need audio outputs, they can call `model.disable_talker()` after init the model. This option will save about `~2GB` of GPU memory but the `return_audio` option for `generate` function will only allow to be set at `False`.
923
+ ```python
924
+ model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
925
+ "Qwen/Qwen2.5-Omni-3B",
926
+ torch_dtype="auto",
927
+ device_map="auto"
928
+ )
929
+ model.disable_talker()
930
+ ```
931
+
932
+ In order to obtain a flexible experience, we recommend that users can decide whether to return audio when `generate` function is called. If `return_audio` is set to `False`, the model will only return text outputs to get text responses faster.
933
+
934
+ ```python
935
+ model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
936
+ "Qwen/Qwen2.5-Omni-3B",
937
+ torch_dtype="auto",
938
+ device_map="auto"
939
+ )
940
+ ...
941
+ text_ids = model.generate(**inputs, return_audio=False)
942
+ ```
943
+
944
+ #### Change voice type of output audio
945
+ Qwen2.5-Omni supports the ability to change the voice of the output audio. The `"Qwen/Qwen2.5-Omni-3B"` checkpoint support two voice types as follow:
946
+
947
+ | Voice Type | Gender | Description |
948
+ |------------|--------|-------------|
949
+ | Chelsie | Female | A honeyed, velvety voice that carries a gentle warmth and luminous clarity.|
950
+ | Ethan | Male | A bright, upbeat voice with infectious energy and a warm, approachable vibe.|
951
+
952
+ Users can use the `speaker` parameter of `generate` function to specify the voice type. By default, if `speaker` is not specified, the default voice type is `Chelsie`.
953
+
954
+ ```python
955
+ text_ids, audio = model.generate(**inputs, speaker="Chelsie")
956
+ ```
957
+
958
+ ```python
959
+ text_ids, audio = model.generate(**inputs, speaker="Ethan")
960
+ ```
961
+
962
+ #### Flash-Attention 2 to speed up generation
963
+
964
+ First, make sure to install the latest version of Flash Attention 2:
965
+
966
+ ```bash
967
+ pip install -U flash-attn --no-build-isolation
968
+ ```
969
+
970
+ Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention-2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`.
971
+
972
+ To load and run a model using FlashAttention-2, add `attn_implementation="flash_attention_2"` when loading the model:
973
+
974
+ ```python
975
+ from transformers import Qwen2_5OmniForConditionalGeneration
976
+
977
+ model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
978
+ "Qwen/Qwen2.5-Omni-3B",
979
+ device_map="auto",
980
+ torch_dtype=torch.bfloat16,
981
+ attn_implementation="flash_attention_2",
982
+ )
983
+ ```
984
+
985
+
986
+ ## Citation
987
+
988
+ If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :)
989
+
990
+
991
+
992
+ ```BibTeX
993
+
994
+ @article{Qwen2.5-Omni,
995
+ title={Qwen2.5-Omni Technical Report},
996
+ author={Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, Junyang Lin},
997
+ journal={arXiv preprint arXiv:2503.20215},
998
+ year={2025}
999
+ }
1000
+ ```
1001
+
1002
+ <br>
1003
+
config.json ADDED
@@ -0,0 +1,566 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2_5OmniModel"
4
+ ],
5
+ "enable_audio_output": true,
6
+ "enable_talker": true,
7
+ "model_type": "qwen2_5_omni",
8
+ "pad_token_id": 151654,
9
+ "talker_config": {
10
+ "_name_or_path": "Qwen2.5-Omni-3B/talker",
11
+ "architectures": [
12
+ "Qwen2OmniTalkerForConditionalGeneration"
13
+ ],
14
+ "attention_dropout": 0.0,
15
+ "audio_end_token_id": 151648,
16
+ "audio_start_token_id": 151647,
17
+ "audio_token_index": 151646,
18
+ "embedding_size": 2048,
19
+ "head_dim": 64,
20
+ "hidden_act": "silu",
21
+ "hidden_size": 896,
22
+ "image_token_index": 151655,
23
+ "init_std": 0.02,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 4864,
26
+ "max_position_embeddings": 32768,
27
+ "max_window_layers": 28,
28
+ "model_type": "qwen2_5_omni_talker",
29
+ "num_attention_heads": 14,
30
+ "num_hidden_layers": 24,
31
+ "num_key_value_heads": 2,
32
+ "position_id_per_seconds": 25,
33
+ "rms_norm_eps": 1e-06,
34
+ "rope_scaling": {
35
+ "mrope_section": [
36
+ 16,
37
+ 16,
38
+ 0
39
+ ],
40
+ "rope_type": "default",
41
+ "type": "default"
42
+ },
43
+ "rope_theta": 1000000.0,
44
+ "seconds_per_chunk": 2,
45
+ "sliding_window": 32768,
46
+ "spatial_merge_size": 2,
47
+ "torch_dtype": "bfloat16",
48
+ "tts_codec_end_token_id": 8294,
49
+ "tts_codec_mask_token_id": 8296,
50
+ "tts_codec_pad_token_id": 8292,
51
+ "tts_codec_start_token_id": 8293,
52
+ "tts_text_end_token_id": 151861,
53
+ "tts_text_pad_token_id": 151859,
54
+ "tts_text_start_token_id": 151860,
55
+ "use_cache": true,
56
+ "use_sliding_window": false,
57
+ "video_token_index": 151656,
58
+ "vision_end_token_id": 151653,
59
+ "vision_start_token_id": 151652,
60
+ "vocab_size": 8448
61
+ },
62
+ "thinker_config": {
63
+ "_name_or_path": "Qwen2.5-Omni-3B/thinker",
64
+ "architectures": [
65
+ "Qwen2OmniNaViTThinkerForConditionalGeneration"
66
+ ],
67
+ "audio_config": {
68
+ "_name_or_path": "",
69
+ "activation_dropout": 0.0,
70
+ "activation_function": "gelu",
71
+ "add_cross_attention": false,
72
+ "architectures": null,
73
+ "attention_dropout": 0.0,
74
+ "bad_words_ids": null,
75
+ "begin_suppress_tokens": null,
76
+ "bos_token_id": null,
77
+ "chunk_size_feed_forward": 0,
78
+ "cross_attention_hidden_size": null,
79
+ "d_model": 1280,
80
+ "decoder_start_token_id": null,
81
+ "diversity_penalty": 0.0,
82
+ "do_sample": false,
83
+ "dropout": 0.0,
84
+ "early_stopping": false,
85
+ "encoder_attention_heads": 20,
86
+ "encoder_ffn_dim": 5120,
87
+ "encoder_layerdrop": 0.0,
88
+ "encoder_layers": 32,
89
+ "encoder_no_repeat_ngram_size": 0,
90
+ "eos_token_id": null,
91
+ "exponential_decay_length_penalty": null,
92
+ "finetuning_task": null,
93
+ "forced_bos_token_id": null,
94
+ "forced_eos_token_id": null,
95
+ "id2label": {
96
+ "0": "LABEL_0",
97
+ "1": "LABEL_1"
98
+ },
99
+ "init_std": 0.02,
100
+ "initializer_range": 0.02,
101
+ "is_decoder": false,
102
+ "is_encoder_decoder": false,
103
+ "label2id": {
104
+ "LABEL_0": 0,
105
+ "LABEL_1": 1
106
+ },
107
+ "length_penalty": 1.0,
108
+ "max_length": 20,
109
+ "max_source_positions": 1500,
110
+ "min_length": 0,
111
+ "model_type": "qwen2_5_omni_audio_encoder",
112
+ "n_window": 100,
113
+ "no_repeat_ngram_size": 0,
114
+ "num_beam_groups": 1,
115
+ "num_beams": 1,
116
+ "num_hidden_layers": 32,
117
+ "num_mel_bins": 128,
118
+ "num_return_sequences": 1,
119
+ "output_attentions": false,
120
+ "output_dim": 2048,
121
+ "output_hidden_states": false,
122
+ "output_scores": false,
123
+ "pad_token_id": null,
124
+ "prefix": null,
125
+ "problem_type": null,
126
+ "pruned_heads": {},
127
+ "remove_invalid_values": false,
128
+ "repetition_penalty": 1.0,
129
+ "return_dict": true,
130
+ "return_dict_in_generate": false,
131
+ "scale_embedding": false,
132
+ "sep_token_id": null,
133
+ "suppress_tokens": null,
134
+ "task_specific_params": null,
135
+ "temperature": 1.0,
136
+ "tf_legacy_loss": false,
137
+ "tie_encoder_decoder": false,
138
+ "tie_word_embeddings": true,
139
+ "tokenizer_class": null,
140
+ "top_k": 50,
141
+ "top_p": 1.0,
142
+ "torch_dtype": null,
143
+ "torchscript": false,
144
+ "typical_p": 1.0,
145
+ "use_bfloat16": false
146
+ },
147
+ "audio_end_token_id": 151648,
148
+ "audio_start_token_id": 151647,
149
+ "audio_token_index": 151646,
150
+ "bos_token_id": 151644,
151
+ "eos_token_id": 151645,
152
+ "ignore_index": -100,
153
+ "image_token_index": 151655,
154
+ "init_std": 0.02,
155
+ "initializer_range": 0.02,
156
+ "model_type": "qwen2_5_omni_thinker",
157
+ "pad_token_id": 151643,
158
+ "position_id_per_seconds": 25,
159
+ "seconds_per_chunk": 2,
160
+ "text_config": {
161
+ "_name_or_path": "",
162
+ "add_cross_attention": false,
163
+ "architectures": null,
164
+ "attention_dropout": 0.0,
165
+ "bad_words_ids": null,
166
+ "begin_suppress_tokens": null,
167
+ "bos_token_id": null,
168
+ "chunk_size_feed_forward": 0,
169
+ "cross_attention_hidden_size": null,
170
+ "decoder_start_token_id": null,
171
+ "diversity_penalty": 0.0,
172
+ "do_sample": false,
173
+ "early_stopping": false,
174
+ "encoder_no_repeat_ngram_size": 0,
175
+ "eos_token_id": null,
176
+ "exponential_decay_length_penalty": null,
177
+ "finetuning_task": null,
178
+ "forced_bos_token_id": null,
179
+ "forced_eos_token_id": null,
180
+ "hidden_act": "silu",
181
+ "hidden_size": 2048,
182
+ "id2label": {
183
+ "0": "LABEL_0",
184
+ "1": "LABEL_1"
185
+ },
186
+ "init_std": 0.02,
187
+ "initializer_range": 0.02,
188
+ "intermediate_size": 11008,
189
+ "is_decoder": false,
190
+ "is_encoder_decoder": false,
191
+ "label2id": {
192
+ "LABEL_0": 0,
193
+ "LABEL_1": 1
194
+ },
195
+ "length_penalty": 1.0,
196
+ "max_length": 20,
197
+ "max_position_embeddings": 32768,
198
+ "max_window_layers": 70,
199
+ "min_length": 0,
200
+ "model_type": "qwen2_5_omni_text",
201
+ "no_repeat_ngram_size": 0,
202
+ "num_attention_heads": 16,
203
+ "num_beam_groups": 1,
204
+ "num_beams": 1,
205
+ "num_hidden_layers": 36,
206
+ "num_key_value_heads": 2,
207
+ "num_return_sequences": 1,
208
+ "output_attentions": false,
209
+ "output_hidden_states": false,
210
+ "output_scores": false,
211
+ "pad_token_id": null,
212
+ "prefix": null,
213
+ "problem_type": null,
214
+ "pruned_heads": {},
215
+ "remove_invalid_values": false,
216
+ "repetition_penalty": 1.0,
217
+ "return_dict": true,
218
+ "return_dict_in_generate": false,
219
+ "rms_norm_eps": 1e-06,
220
+ "rope_scaling": {
221
+ "mrope_section": [
222
+ 16,
223
+ 24,
224
+ 24
225
+ ],
226
+ "rope_type": "default",
227
+ "type": "default"
228
+ },
229
+ "rope_theta": 1000000.0,
230
+ "sep_token_id": null,
231
+ "sliding_window": 32768,
232
+ "suppress_tokens": null,
233
+ "task_specific_params": null,
234
+ "temperature": 1.0,
235
+ "tf_legacy_loss": false,
236
+ "tie_encoder_decoder": false,
237
+ "tie_word_embeddings": false,
238
+ "tokenizer_class": null,
239
+ "top_k": 50,
240
+ "top_p": 1.0,
241
+ "torch_dtype": null,
242
+ "torchscript": false,
243
+ "typical_p": 1.0,
244
+ "use_bfloat16": false,
245
+ "use_cache": true,
246
+ "use_sliding_window": false,
247
+ "vocab_size": 151936
248
+ },
249
+ "torch_dtype": "bfloat16",
250
+ "user_token_id": 872,
251
+ "video_token_index": 151656,
252
+ "vision_config": {
253
+ "_name_or_path": "",
254
+ "add_cross_attention": false,
255
+ "architectures": null,
256
+ "bad_words_ids": null,
257
+ "begin_suppress_tokens": null,
258
+ "bos_token_id": null,
259
+ "chunk_size_feed_forward": 0,
260
+ "cross_attention_hidden_size": null,
261
+ "decoder_start_token_id": null,
262
+ "depth": 32,
263
+ "diversity_penalty": 0.0,
264
+ "do_sample": false,
265
+ "early_stopping": false,
266
+ "embed_dim": 1280,
267
+ "encoder_no_repeat_ngram_size": 0,
268
+ "eos_token_id": null,
269
+ "exponential_decay_length_penalty": null,
270
+ "finetuning_task": null,
271
+ "forced_bos_token_id": null,
272
+ "forced_eos_token_id": null,
273
+ "fullatt_block_indexes": [
274
+ 7,
275
+ 15,
276
+ 23,
277
+ 31
278
+ ],
279
+ "hidden_act": "silu",
280
+ "hidden_size": 1280,
281
+ "id2label": {
282
+ "0": "LABEL_0",
283
+ "1": "LABEL_1"
284
+ },
285
+ "in_channels": 3,
286
+ "in_chans": 3,
287
+ "init_std": 0.02,
288
+ "initializer_range": 0.02,
289
+ "intermediate_size": 3420,
290
+ "is_decoder": false,
291
+ "is_encoder_decoder": false,
292
+ "label2id": {
293
+ "LABEL_0": 0,
294
+ "LABEL_1": 1
295
+ },
296
+ "length_penalty": 1.0,
297
+ "max_length": 20,
298
+ "min_length": 0,
299
+ "model_type": "qwen2_5_omni_vision_encoder",
300
+ "no_repeat_ngram_size": 0,
301
+ "num_beam_groups": 1,
302
+ "num_beams": 1,
303
+ "num_heads": 16,
304
+ "num_return_sequences": 1,
305
+ "out_hidden_size": 2048,
306
+ "output_attentions": false,
307
+ "output_hidden_states": false,
308
+ "output_scores": false,
309
+ "pad_token_id": null,
310
+ "patch_size": 14,
311
+ "prefix": null,
312
+ "problem_type": null,
313
+ "pruned_heads": {},
314
+ "remove_invalid_values": false,
315
+ "repetition_penalty": 1.0,
316
+ "return_dict": true,
317
+ "return_dict_in_generate": false,
318
+ "sep_token_id": null,
319
+ "spatial_merge_size": 2,
320
+ "spatial_patch_size": 14,
321
+ "suppress_tokens": null,
322
+ "task_specific_params": null,
323
+ "temperature": 1.0,
324
+ "temporal_patch_size": 2,
325
+ "tf_legacy_loss": false,
326
+ "tie_encoder_decoder": false,
327
+ "tie_word_embeddings": true,
328
+ "tokenizer_class": null,
329
+ "tokens_per_second": 25,
330
+ "top_k": 50,
331
+ "top_p": 1.0,
332
+ "torch_dtype": null,
333
+ "torchscript": false,
334
+ "typical_p": 1.0,
335
+ "use_bfloat16": false,
336
+ "window_size": 112
337
+ },
338
+ "vision_end_token_id": 151653,
339
+ "vision_start_token_id": 151652,
340
+ "vision_token_id": 151654
341
+ },
342
+ "token2wav_config": {
343
+ "bigvgan_config": {
344
+ "_name_or_path": "",
345
+ "add_cross_attention": false,
346
+ "architectures": null,
347
+ "bad_words_ids": null,
348
+ "begin_suppress_tokens": null,
349
+ "bos_token_id": null,
350
+ "chunk_size_feed_forward": 0,
351
+ "cross_attention_hidden_size": null,
352
+ "decoder_start_token_id": null,
353
+ "diversity_penalty": 0.0,
354
+ "do_sample": false,
355
+ "early_stopping": false,
356
+ "encoder_no_repeat_ngram_size": 0,
357
+ "eos_token_id": null,
358
+ "exponential_decay_length_penalty": null,
359
+ "finetuning_task": null,
360
+ "forced_bos_token_id": null,
361
+ "forced_eos_token_id": null,
362
+ "id2label": {
363
+ "0": "LABEL_0",
364
+ "1": "LABEL_1"
365
+ },
366
+ "is_decoder": false,
367
+ "is_encoder_decoder": false,
368
+ "label2id": {
369
+ "LABEL_0": 0,
370
+ "LABEL_1": 1
371
+ },
372
+ "length_penalty": 1.0,
373
+ "max_length": 20,
374
+ "mel_dim": 80,
375
+ "min_length": 0,
376
+ "model_type": "qwen2_5_omni_bigvgan",
377
+ "no_repeat_ngram_size": 0,
378
+ "num_beam_groups": 1,
379
+ "num_beams": 1,
380
+ "num_return_sequences": 1,
381
+ "output_attentions": false,
382
+ "output_hidden_states": false,
383
+ "output_scores": false,
384
+ "pad_token_id": null,
385
+ "prefix": null,
386
+ "problem_type": null,
387
+ "pruned_heads": {},
388
+ "remove_invalid_values": false,
389
+ "repetition_penalty": 1.0,
390
+ "resblock_dilation_sizes": [
391
+ [
392
+ 1,
393
+ 3,
394
+ 5
395
+ ],
396
+ [
397
+ 1,
398
+ 3,
399
+ 5
400
+ ],
401
+ [
402
+ 1,
403
+ 3,
404
+ 5
405
+ ]
406
+ ],
407
+ "resblock_kernel_sizes": [
408
+ 3,
409
+ 7,
410
+ 11
411
+ ],
412
+ "return_dict": true,
413
+ "return_dict_in_generate": false,
414
+ "sep_token_id": null,
415
+ "suppress_tokens": null,
416
+ "task_specific_params": null,
417
+ "temperature": 1.0,
418
+ "tf_legacy_loss": false,
419
+ "tie_encoder_decoder": false,
420
+ "tie_word_embeddings": true,
421
+ "tokenizer_class": null,
422
+ "top_k": 50,
423
+ "top_p": 1.0,
424
+ "torch_dtype": null,
425
+ "torchscript": false,
426
+ "typical_p": 1.0,
427
+ "upsample_initial_channel": 1536,
428
+ "upsample_kernel_sizes": [
429
+ 11,
430
+ 7,
431
+ 4,
432
+ 4,
433
+ 4,
434
+ 4
435
+ ],
436
+ "upsample_rates": [
437
+ 5,
438
+ 3,
439
+ 2,
440
+ 2,
441
+ 2,
442
+ 2
443
+ ],
444
+ "use_bfloat16": false,
445
+ "use_bias_at_final": false
446
+ },
447
+ "dit_config": {
448
+ "_name_or_path": "",
449
+ "add_cross_attention": false,
450
+ "architectures": null,
451
+ "bad_words_ids": null,
452
+ "begin_suppress_tokens": null,
453
+ "block_size": 24,
454
+ "bos_token_id": null,
455
+ "chunk_size_feed_forward": 0,
456
+ "cross_attention_hidden_size": null,
457
+ "decoder_start_token_id": null,
458
+ "depth": 22,
459
+ "dim": 1024,
460
+ "diversity_penalty": 0.0,
461
+ "do_sample": false,
462
+ "dropout": 0.1,
463
+ "early_stopping": false,
464
+ "emb_dim": 512,
465
+ "enc_attention_channels": 64,
466
+ "enc_channels": [
467
+ 256,
468
+ 256,
469
+ 256,
470
+ 256,
471
+ 768
472
+ ],
473
+ "enc_dilations": [
474
+ 1,
475
+ 2,
476
+ 3,
477
+ 4,
478
+ 1
479
+ ],
480
+ "enc_dim": 128,
481
+ "enc_emb_dim": 192,
482
+ "enc_global_context": true,
483
+ "enc_kernel_sizes": [
484
+ 5,
485
+ 3,
486
+ 3,
487
+ 3,
488
+ 1
489
+ ],
490
+ "enc_lin_neurons": 192,
491
+ "enc_res2net_scale": 2,
492
+ "enc_se_channels": 64,
493
+ "encoder_no_repeat_ngram_size": 0,
494
+ "eos_token_id": null,
495
+ "exponential_decay_length_penalty": null,
496
+ "ff_mult": 2,
497
+ "finetuning_task": null,
498
+ "forced_bos_token_id": null,
499
+ "forced_eos_token_id": null,
500
+ "head_dim": 64,
501
+ "heads": 16,
502
+ "hidden_size": 1024,
503
+ "id2label": {
504
+ "0": "LABEL_0",
505
+ "1": "LABEL_1"
506
+ },
507
+ "is_decoder": false,
508
+ "is_encoder_decoder": false,
509
+ "label2id": {
510
+ "LABEL_0": 0,
511
+ "LABEL_1": 1
512
+ },
513
+ "length_penalty": 1.0,
514
+ "look_ahead_layers": [
515
+ 10
516
+ ],
517
+ "look_backward_layers": [
518
+ 0,
519
+ 20
520
+ ],
521
+ "max_length": 20,
522
+ "max_position_embeddings": 32768,
523
+ "mel_dim": 80,
524
+ "min_length": 0,
525
+ "model_type": "qwen2_5_omni_dit",
526
+ "no_repeat_ngram_size": 0,
527
+ "num_attention_heads": 16,
528
+ "num_beam_groups": 1,
529
+ "num_beams": 1,
530
+ "num_embeds": 8193,
531
+ "num_hidden_layers": 22,
532
+ "num_return_sequences": 1,
533
+ "output_attentions": false,
534
+ "output_hidden_states": false,
535
+ "output_scores": false,
536
+ "pad_token_id": null,
537
+ "prefix": null,
538
+ "problem_type": null,
539
+ "pruned_heads": {},
540
+ "remove_invalid_values": false,
541
+ "repeats": 2,
542
+ "repetition_penalty": 1.0,
543
+ "return_dict": true,
544
+ "return_dict_in_generate": false,
545
+ "rope_theta": 10000.0,
546
+ "sep_token_id": null,
547
+ "suppress_tokens": null,
548
+ "task_specific_params": null,
549
+ "temperature": 1.0,
550
+ "tf_legacy_loss": false,
551
+ "tie_encoder_decoder": false,
552
+ "tie_word_embeddings": true,
553
+ "tokenizer_class": null,
554
+ "top_k": 50,
555
+ "top_p": 1.0,
556
+ "torch_dtype": "float32",
557
+ "torchscript": false,
558
+ "typical_p": 1.0,
559
+ "use_bfloat16": false
560
+ },
561
+ "model_type": "qwen2_5_omni_token2wav"
562
+ },
563
+ "torch_dtype": "bfloat16",
564
+ "transformers_version": "4.52.3",
565
+ "unsloth_fixed": true
566
+ }
mmproj-F16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:241732c25cafbda8f487bc5d060453c650ddfee67f5e2c19750fcfa3e9a6c5a5
3
+ size 2623983872
mmproj-F32.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3ba9407468945217412408a0f412ae340f362a668e242d1840861dcbb3041a1
3
+ size 5222353152