File size: 5,653 Bytes
352467e be6a82f 44e6fb6 72e4a68 352467e 44e6fb6 83a1511 cd690f3 352467e 7cf9ef7 352467e 7cf9ef7 352467e 7cf9ef7 352467e 44e6fb6 02decd0 83a1511 44e6fb6 83a1511 44e6fb6 83a1511 cd690f3 83a1511 44e6fb6 83a1511 44e6fb6 83a1511 44e6fb6 83a1511 44e6fb6 cd690f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
pipeline_tag: text-classification
language:
- multilingual
license: apache-2.0
library_name: transformers
---

# Model Description
This model was built by translating the fineweb-edu annotations into 15 languages using a state-of-the-art proprietary LLM for translation, TowerLLM 70B.
The translation model excels at translating entire documents and thus it is the perfect fit to translate the texts we will use to train our classifier.
The classifier is trained for English, German, Spanish, Japanese, Chinese, Russian, Hindi, Czech, Ukrainian, Icelandic, Portuguese, French, Dutch, Italian and Korean. Since it is built on top of [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) it should be able to generalize across other languages.
## Running Model:
To run inference you must install
```
pip install transformers[torch]
pip install datasets
pip install pandas
pip install tqdm
```
After installing those libraries you can run the following code:
```python
import pandas as pd
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from tqdm import tqdm
device = "cuda"
path = "utter-project/EuroFilter-v1"
model = AutoModelForSequenceClassification.from_pretrained(
path,
device_map=device,
trust_remote_code=True,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(path, use_fast=True)
def get_model_outputs(texts):
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512).to(model.device)
with torch.no_grad():
outputs = model(**inputs)
score = outputs.logits
prob = torch.nn.functional.sigmoid(outputs.binary_logits)
return score.cpu(), prob.cpu()
def batchify_texts(texts, batch_size):
for i in range(0, len(texts), batch_size):
yield texts[i:i + batch_size]
# TODO: replace the next line with the texts you want to classify
texts = LIST_WITH_TEXTS_TO_CLASSIFY
batch_size = 64 # Adjust based on your available memory and model capacity
num_batches = (len(texts) + batch_size - 1) // batch_size
all_scores = []
all_probs = []
with tqdm(total=num_batches, dynamic_ncols=True) as pbar:
for batch_num, batch in enumerate(batchify_texts(texts, batch_size), 1):
score, probs = get_model_outputs(batch)
all_scores.append(score)
all_probs.append(probs)
pbar.set_description(f"Processing Batch {batch_num}/{num_batches}")
pbar.update(1)
# SCORES is the output of the regression head and should reflect the
# educational score of the text!
scores = torch.cat(all_scores, dim=0).squeeze()
## BINARY_PRED is the output of the classification head that tells
# if a text has an acceptable educational score or not.
# NOTE: Converting the scores into binary predictions is also possible
all_probs = torch.cat(all_probs, dim=0).squeeze()
binary_pred = (all_probs >= 0.5).numpy().astype(int)
```
## English Results:
When testing the model on an english partition with 37537 samples the results are comparable to the original FineEdu-classifier.
Regression head results:
```
precision recall f1-score support
0 0.80 0.53 0.64 5130
1 0.80 0.88 0.83 21602
2 0.63 0.58 0.61 7849
3 0.54 0.62 0.58 2310
4 0.62 0.48 0.54 645
5 0.00 0.00 0.00 1
accuracy 0.74 37537
macro avg 0.56 0.51 0.53 37537
weighted avg 0.74 0.74 0.74 37537
```
Binary head results:
```
precision recall f1-score support
0 0.98 0.97 0.98 34581
1 0.71 0.74 0.73 2956
accuracy 0.96 37537
macro avg 0.85 0.86 0.85 37537
weighted avg 0.96 0.96 0.96 37537
```
## Multilingual Results:
If we evaluate on the same texts translated into 15 different languages are almost identical!
Regression head results:
```
precision recall f1-score support
0 0.80 0.50 0.61 5130
1 0.79 0.87 0.83 21602
2 0.61 0.58 0.59 7849
3 0.52 0.61 0.56 2310
4 0.61 0.38 0.47 645
5 0.00 0.00 0.00 1
accuracy 0.73 37537
macro avg 0.55 0.49 0.51 37537
weighted avg 0.73 0.73 0.73 37537
```
Binary head results:
```
precision recall f1-score support
0 0.98 0.97 0.97 34581
1 0.70 0.71 0.71 2956
accuracy 0.95 37537
macro avg 0.84 0.84 0.84 37537
weighted avg 0.95 0.95 0.95 37537
```
## Citation
If you use our work, please cite:
```
@misc{martins2025eurollm9B,
title={EuroLLM-9B: Technical Report},
author={Pedro Henrique Martins and João Alves and Patrick Fernandes and and Nuno M. Guerreiro and Ricardo Rei and Amin Farajian and Mateusz Klimaszewski and Duarte M. Alves and José Pombal and Manuel Faysse and Pierre Colombo and François Yvon and Barry Haddow and José G. C. de Souza and Alexandra Birch and André F. T. Martins},
year={2025},
archivePrefix={arXiv},
primaryClass={cs.CL},
}
```
|