bge-base-en-v1.5-klej-dyk
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'Herkules na rozstajach',
'jak zinterpretować wymowę obrazu Herkules na rozstajach?',
'Dowódcą grupy był Wiaczesław Razumowicz ps. „Chmara”.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1731 |
| cosine_accuracy@3 |
0.4615 |
| cosine_accuracy@5 |
0.6226 |
| cosine_accuracy@10 |
0.7356 |
| cosine_precision@1 |
0.1731 |
| cosine_precision@3 |
0.1538 |
| cosine_precision@5 |
0.1245 |
| cosine_precision@10 |
0.0736 |
| cosine_recall@1 |
0.1731 |
| cosine_recall@3 |
0.4615 |
| cosine_recall@5 |
0.6226 |
| cosine_recall@10 |
0.7356 |
| cosine_ndcg@10 |
0.4434 |
| cosine_mrr@10 |
0.3505 |
| cosine_map@100 |
0.3574 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1683 |
| cosine_accuracy@3 |
0.4519 |
| cosine_accuracy@5 |
0.601 |
| cosine_accuracy@10 |
0.7091 |
| cosine_precision@1 |
0.1683 |
| cosine_precision@3 |
0.1506 |
| cosine_precision@5 |
0.1202 |
| cosine_precision@10 |
0.0709 |
| cosine_recall@1 |
0.1683 |
| cosine_recall@3 |
0.4519 |
| cosine_recall@5 |
0.601 |
| cosine_recall@10 |
0.7091 |
| cosine_ndcg@10 |
0.4296 |
| cosine_mrr@10 |
0.3406 |
| cosine_map@100 |
0.3485 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1923 |
| cosine_accuracy@3 |
0.4543 |
| cosine_accuracy@5 |
0.5913 |
| cosine_accuracy@10 |
0.6899 |
| cosine_precision@1 |
0.1923 |
| cosine_precision@3 |
0.1514 |
| cosine_precision@5 |
0.1183 |
| cosine_precision@10 |
0.069 |
| cosine_recall@1 |
0.1923 |
| cosine_recall@3 |
0.4543 |
| cosine_recall@5 |
0.5913 |
| cosine_recall@10 |
0.6899 |
| cosine_ndcg@10 |
0.4311 |
| cosine_mrr@10 |
0.3488 |
| cosine_map@100 |
0.3561 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1635 |
| cosine_accuracy@3 |
0.4159 |
| cosine_accuracy@5 |
0.5168 |
| cosine_accuracy@10 |
0.5986 |
| cosine_precision@1 |
0.1635 |
| cosine_precision@3 |
0.1386 |
| cosine_precision@5 |
0.1034 |
| cosine_precision@10 |
0.0599 |
| cosine_recall@1 |
0.1635 |
| cosine_recall@3 |
0.4159 |
| cosine_recall@5 |
0.5168 |
| cosine_recall@10 |
0.5986 |
| cosine_ndcg@10 |
0.3764 |
| cosine_mrr@10 |
0.3052 |
| cosine_map@100 |
0.3152 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1659 |
| cosine_accuracy@3 |
0.351 |
| cosine_accuracy@5 |
0.4399 |
| cosine_accuracy@10 |
0.5288 |
| cosine_precision@1 |
0.1659 |
| cosine_precision@3 |
0.117 |
| cosine_precision@5 |
0.088 |
| cosine_precision@10 |
0.0529 |
| cosine_recall@1 |
0.1659 |
| cosine_recall@3 |
0.351 |
| cosine_recall@5 |
0.4399 |
| cosine_recall@10 |
0.5288 |
| cosine_ndcg@10 |
0.3382 |
| cosine_mrr@10 |
0.278 |
| cosine_map@100 |
0.2877 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,738 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 6 tokens
- mean: 90.01 tokens
- max: 512 tokens
|
- min: 10 tokens
- mean: 30.82 tokens
- max: 76 tokens
|
- Samples:
| positive |
anchor |
Londyńska premiera w Ambassadors Theatre na londyńskim West Endzie miała miejsce 25 listopada 1952 roku, a przedstawione grane jest do dziś (od 1974 r.) w sąsiednim St Martin's Theatre. W Polsce była wystawiana m.in. w Teatrze Nowym w Zabrzu. |
w którym londyńskim muzeum wystawiana była instalacja My Bed? |
Theridion grallator osiąga długość 5 mm. U niektórych postaci na żółtym odwłoku występuje wzór przypominający uśmiechniętą lub śmiejącą się twarz klowna. |
które pająki noszą na grzbiecie wzór przypominający uśmiechniętego klauna? |
W 1998 w wyniku sporów o wytyczenie granicy między dwoma państwami wybuchła wojna erytrejsko-etiopska. Zakończyła się porozumieniem zawartym w Algierze 12 grudnia 2000. Od tego czasu strefa graniczna jest patrolowana przez siły pokojowe ONZ. |
jakie były skutki wojny erytrejsko-etiopskiej? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 10
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
tf32: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 10
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
| 0.0684 |
1 |
7.2706 |
- |
- |
- |
- |
- |
| 0.1368 |
2 |
8.2776 |
- |
- |
- |
- |
- |
| 0.2051 |
3 |
7.1399 |
- |
- |
- |
- |
- |
| 0.2735 |
4 |
6.6905 |
- |
- |
- |
- |
- |
| 0.3419 |
5 |
6.735 |
- |
- |
- |
- |
- |
| 0.4103 |
6 |
7.0537 |
- |
- |
- |
- |
- |
| 0.4786 |
7 |
6.871 |
- |
- |
- |
- |
- |
| 0.5470 |
8 |
6.7277 |
- |
- |
- |
- |
- |
| 0.6154 |
9 |
5.9853 |
- |
- |
- |
- |
- |
| 0.6838 |
10 |
6.0518 |
- |
- |
- |
- |
- |
| 0.7521 |
11 |
5.8291 |
- |
- |
- |
- |
- |
| 0.8205 |
12 |
5.0064 |
- |
- |
- |
- |
- |
| 0.8889 |
13 |
4.8572 |
- |
- |
- |
- |
- |
| 0.9573 |
14 |
5.1899 |
0.2812 |
0.3335 |
0.3486 |
0.2115 |
0.3639 |
| 1.0256 |
15 |
4.2996 |
- |
- |
- |
- |
- |
| 1.0940 |
16 |
4.1475 |
- |
- |
- |
- |
- |
| 1.1624 |
17 |
4.6174 |
- |
- |
- |
- |
- |
| 1.2308 |
18 |
4.394 |
- |
- |
- |
- |
- |
| 1.2991 |
19 |
4.0255 |
- |
- |
- |
- |
- |
| 1.3675 |
20 |
3.9722 |
- |
- |
- |
- |
- |
| 1.4359 |
21 |
3.9509 |
- |
- |
- |
- |
- |
| 1.5043 |
22 |
3.7674 |
- |
- |
- |
- |
- |
| 1.5726 |
23 |
3.7572 |
- |
- |
- |
- |
- |
| 1.6410 |
24 |
3.9463 |
- |
- |
- |
- |
- |
| 1.7094 |
25 |
3.7151 |
- |
- |
- |
- |
- |
| 1.7778 |
26 |
3.7771 |
- |
- |
- |
- |
- |
| 1.8462 |
27 |
3.5228 |
- |
- |
- |
- |
- |
| 1.9145 |
28 |
2.7906 |
- |
- |
- |
- |
- |
| 1.9829 |
29 |
3.4555 |
0.3164 |
0.3529 |
0.3641 |
0.2636 |
0.3681 |
| 2.0513 |
30 |
2.737 |
- |
- |
- |
- |
- |
| 2.1197 |
31 |
3.1976 |
- |
- |
- |
- |
- |
| 2.1880 |
32 |
3.1363 |
- |
- |
- |
- |
- |
| 2.2564 |
33 |
2.9706 |
- |
- |
- |
- |
- |
| 2.3248 |
34 |
2.9629 |
- |
- |
- |
- |
- |
| 2.3932 |
35 |
2.7226 |
- |
- |
- |
- |
- |
| 2.4615 |
36 |
2.4378 |
- |
- |
- |
- |
- |
| 2.5299 |
37 |
2.7201 |
- |
- |
- |
- |
- |
| 2.5983 |
38 |
2.6802 |
- |
- |
- |
- |
- |
| 2.6667 |
39 |
3.1613 |
- |
- |
- |
- |
- |
| 2.7350 |
40 |
2.9344 |
- |
- |
- |
- |
- |
| 2.8034 |
41 |
2.5254 |
- |
- |
- |
- |
- |
| 2.8718 |
42 |
2.5617 |
- |
- |
- |
- |
- |
| 2.9402 |
43 |
2.459 |
0.3197 |
0.3571 |
0.3640 |
0.2739 |
0.3733 |
| 3.0085 |
44 |
2.3785 |
- |
- |
- |
- |
- |
| 3.0769 |
45 |
1.9408 |
- |
- |
- |
- |
- |
| 3.1453 |
46 |
2.7095 |
- |
- |
- |
- |
- |
| 3.2137 |
47 |
2.4774 |
- |
- |
- |
- |
- |
| 3.2821 |
48 |
2.2178 |
- |
- |
- |
- |
- |
| 3.3504 |
49 |
2.0884 |
- |
- |
- |
- |
- |
| 3.4188 |
50 |
2.1044 |
- |
- |
- |
- |
- |
| 3.4872 |
51 |
2.1504 |
- |
- |
- |
- |
- |
| 3.5556 |
52 |
2.1177 |
- |
- |
- |
- |
- |
| 3.6239 |
53 |
2.2283 |
- |
- |
- |
- |
- |
| 3.6923 |
54 |
2.3964 |
- |
- |
- |
- |
- |
| 3.7607 |
55 |
2.0972 |
- |
- |
- |
- |
- |
| 3.8291 |
56 |
2.0961 |
- |
- |
- |
- |
- |
| 3.8974 |
57 |
1.783 |
- |
- |
- |
- |
- |
| 3.9658 |
58 |
2.1031 |
0.3246 |
0.3533 |
0.3603 |
0.2829 |
0.3687 |
| 4.0342 |
59 |
1.6699 |
- |
- |
- |
- |
- |
| 4.1026 |
60 |
1.6675 |
- |
- |
- |
- |
- |
| 4.1709 |
61 |
2.1672 |
- |
- |
- |
- |
- |
| 4.2393 |
62 |
1.8881 |
- |
- |
- |
- |
- |
| 4.3077 |
63 |
1.701 |
- |
- |
- |
- |
- |
| 4.3761 |
64 |
1.9154 |
- |
- |
- |
- |
- |
| 4.4444 |
65 |
1.4549 |
- |
- |
- |
- |
- |
| 4.5128 |
66 |
1.5444 |
- |
- |
- |
- |
- |
| 4.5812 |
67 |
1.8352 |
- |
- |
- |
- |
- |
| 4.6496 |
68 |
1.7908 |
- |
- |
- |
- |
- |
| 4.7179 |
69 |
1.6876 |
- |
- |
- |
- |
- |
| 4.7863 |
70 |
1.7366 |
- |
- |
- |
- |
- |
| 4.8547 |
71 |
1.8689 |
- |
- |
- |
- |
- |
| 4.9231 |
72 |
1.4676 |
- |
- |
- |
- |
- |
| 4.9915 |
73 |
1.5045 |
0.3170 |
0.3538 |
0.3606 |
0.2829 |
0.3675 |
| 5.0598 |
74 |
1.2155 |
- |
- |
- |
- |
- |
| 5.1282 |
75 |
1.4365 |
- |
- |
- |
- |
- |
| 5.1966 |
76 |
1.7451 |
- |
- |
- |
- |
- |
| 5.2650 |
77 |
1.4537 |
- |
- |
- |
- |
- |
| 5.3333 |
78 |
1.3813 |
- |
- |
- |
- |
- |
| 5.4017 |
79 |
1.4035 |
- |
- |
- |
- |
- |
| 5.4701 |
80 |
1.3912 |
- |
- |
- |
- |
- |
| 5.5385 |
81 |
1.3286 |
- |
- |
- |
- |
- |
| 5.6068 |
82 |
1.5153 |
- |
- |
- |
- |
- |
| 5.6752 |
83 |
1.6745 |
- |
- |
- |
- |
- |
| 5.7436 |
84 |
1.4323 |
- |
- |
- |
- |
- |
| 5.8120 |
85 |
1.5299 |
- |
- |
- |
- |
- |
| 5.8803 |
86 |
1.488 |
- |
- |
- |
- |
- |
| 5.9487 |
87 |
1.5195 |
0.3206 |
0.3556 |
0.3530 |
0.2878 |
0.3605 |
| 6.0171 |
88 |
1.2999 |
- |
- |
- |
- |
- |
| 6.0855 |
89 |
1.1511 |
- |
- |
- |
- |
- |
| 6.1538 |
90 |
1.552 |
- |
- |
- |
- |
- |
| 6.2222 |
91 |
1.35 |
- |
- |
- |
- |
- |
| 6.2906 |
92 |
1.218 |
- |
- |
- |
- |
- |
| 6.3590 |
93 |
1.1712 |
- |
- |
- |
- |
- |
| 6.4274 |
94 |
1.3381 |
- |
- |
- |
- |
- |
| 6.4957 |
95 |
1.1716 |
- |
- |
- |
- |
- |
| 6.5641 |
96 |
1.2117 |
- |
- |
- |
- |
- |
| 6.6325 |
97 |
1.5349 |
- |
- |
- |
- |
- |
| 6.7009 |
98 |
1.4564 |
- |
- |
- |
- |
- |
| 6.7692 |
99 |
1.3541 |
- |
- |
- |
- |
- |
| 6.8376 |
100 |
1.2468 |
- |
- |
- |
- |
- |
| 6.9060 |
101 |
1.1519 |
- |
- |
- |
- |
- |
| 6.9744 |
102 |
1.2421 |
0.3150 |
0.3555 |
0.3501 |
0.2858 |
0.3575 |
| 7.0427 |
103 |
1.0096 |
- |
- |
- |
- |
- |
| 7.1111 |
104 |
1.1405 |
- |
- |
- |
- |
- |
| 7.1795 |
105 |
1.2958 |
- |
- |
- |
- |
- |
| 7.2479 |
106 |
1.35 |
- |
- |
- |
- |
- |
| 7.3162 |
107 |
1.1291 |
- |
- |
- |
- |
- |
| 7.3846 |
108 |
0.9968 |
- |
- |
- |
- |
- |
| 7.4530 |
109 |
1.0454 |
- |
- |
- |
- |
- |
| 7.5214 |
110 |
1.102 |
- |
- |
- |
- |
- |
| 7.5897 |
111 |
1.1328 |
- |
- |
- |
- |
- |
| 7.6581 |
112 |
1.5988 |
- |
- |
- |
- |
- |
| 7.7265 |
113 |
1.2992 |
- |
- |
- |
- |
- |
| 7.7949 |
114 |
1.2572 |
- |
- |
- |
- |
- |
| 7.8632 |
115 |
1.1414 |
- |
- |
- |
- |
- |
| 7.9316 |
116 |
1.1432 |
- |
- |
- |
- |
- |
| 8.0 |
117 |
1.1181 |
0.3154 |
0.3545 |
0.3509 |
0.2884 |
0.3578 |
| 8.0684 |
118 |
0.9365 |
- |
- |
- |
- |
- |
| 8.1368 |
119 |
1.3286 |
- |
- |
- |
- |
- |
| 8.2051 |
120 |
1.3711 |
- |
- |
- |
- |
- |
| 8.2735 |
121 |
1.2001 |
- |
- |
- |
- |
- |
| 8.3419 |
122 |
1.165 |
- |
- |
- |
- |
- |
| 8.4103 |
123 |
1.0575 |
- |
- |
- |
- |
- |
| 8.4786 |
124 |
1.105 |
- |
- |
- |
- |
- |
| 8.5470 |
125 |
1.077 |
- |
- |
- |
- |
- |
| 8.6154 |
126 |
1.2217 |
- |
- |
- |
- |
- |
| 8.6838 |
127 |
1.3254 |
- |
- |
- |
- |
- |
| 8.7521 |
128 |
1.2165 |
- |
- |
- |
- |
- |
| 8.8205 |
129 |
1.3021 |
- |
- |
- |
- |
- |
| 8.8889 |
130 |
1.0927 |
- |
- |
- |
- |
- |
| 8.9573 |
131 |
1.3961 |
0.3150 |
0.3540 |
0.3490 |
0.2882 |
0.3588 |
| 9.0256 |
132 |
1.0779 |
- |
- |
- |
- |
- |
| 9.0940 |
133 |
0.901 |
- |
- |
- |
- |
- |
| 9.1624 |
134 |
1.313 |
- |
- |
- |
- |
- |
| 9.2308 |
135 |
1.1409 |
- |
- |
- |
- |
- |
| 9.2991 |
136 |
1.1635 |
- |
- |
- |
- |
- |
| 9.3675 |
137 |
1.0244 |
- |
- |
- |
- |
- |
| 9.4359 |
138 |
1.0576 |
- |
- |
- |
- |
- |
| 9.5043 |
139 |
1.0101 |
- |
- |
- |
- |
- |
| 9.5726 |
140 |
1.1516 |
0.3152 |
0.3561 |
0.3485 |
0.2877 |
0.3574 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}