File size: 7,550 Bytes
			
			| 0d2e41a d6ec32a 0d2e41a d487e87 0d2e41a d487e87 0d2e41a d487e87 0d2e41a e5f1ab3 0d2e41a d487e87 0d2e41a | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | ---
language: es
license: apache-2.0
library_name: onnxruntime
pipeline_tag: voice-activity-detection
tags:
- turn-detection
- end-of-utterance
- distilbert
- onnx
- quantized
- conversational-ai
- voice-assistant
- real-time
base_model: distilbert-base-multilingual-cased
datasets:
- videosdk-live/Namo-Turn-Detector-v1-Train
model-index:
- name: Namo Turn Detector v1 - Spanish
  results:
  - task:
      type: text-classification
      name: Turn Detection
    dataset:
      name: Namo Turn Detector v1 Test - Spanish
      type: videosdk-live/Namo-Turn-Detector-v1-Test
      split: train
    metrics:
    - type: accuracy
      value: 0.867181
      name: Accuracy
    - type: f1
      value: 0.878187
      name: F1 Score
    - type: precision
      value: 0.789809
      name: Precision
    - type: recall
      value: 0.988836
      name: Recall
---
# π― Namo Turn Detector v1 - Spanish
<div align="center">
[](https://opensource.org/licenses/Apache-2.0)
[](https://onnx.ai/)
[](https://huggingface.co/videosdk-live/Namo-Turn-Detector-v1-Spanish)
[]()
**π Namo Turn Detection Model for Spanish**
</div>
---
## π Overview
The **Namo Turn Detector** is a specialized AI model designed to solve one of the most challenging problems in conversational AI: **knowing when a user has finished speaking**. 
This Spanish-specialist model uses advanced natural language understanding to distinguish between:
- β
 **Complete utterances** (user is done speaking)
- π **Incomplete utterances** (user will continue speaking)
Built on DistilBERT architecture and optimized with quantized ONNX format, it delivers enterprise-grade performance with minimal latency.
## π Key Features
- **Turn Detection Specialist**: Detects end-of-turn vs. continuation in Spanish speech transcripts.  
- **Low Latency**: Optimized with **quantized ONNX** for <12ms inference.  
- **Robust Performance**: 86.7% accuracy on diverse Spanish utterances.  
- **Easy Integration**: Compatible with Python, ONNX Runtime, and VideoSDK Agents SDK.  
- **Enterprise Ready**: Supports real-time conversational AI and voice assistants.  
## π Performance Metrics
<div>
| Metric | Score |
|--------|-------|
| **π― Accuracy** | **86.71%** | 
| **π F1-Score** | **87.81%** |
| **πͺ Precision** | **78.98%** |
| **π Recall** | **98.88%** |
| **β‘ Latency** | **<12ms** |
| **πΎ Model Size** | **~135MB** |
</div>
<img src="./confusion_matrices.png" alt="Alt text" width="600" height="400"/>
> π *Evaluated on 1200+ Spanish utterances from diverse conversational contexts*
## β‘οΈ Speed Analysis
<img src="./performance_analysis.png" alt="Alt text" width="600" height="400"/>
## π§ Train & Test Scripts
<div align="center">
[](https://colab.research.google.com/drive/1DqSUYfcya0r2iAEZB9fS4mfrennubduV) [](https://colab.research.google.com/drive/19ZOlNoHS2WLX2V4r5r492tsCUnYLXnQR)
</div>
## π οΈ Installation
To use this model, you will need to install the following libraries.
```bash
pip install onnxruntime transformers huggingface_hub
```
## π Quick Start
You can run inference directly from Hugging Face repository.
```python
import numpy as np
import onnxruntime as ort
from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
class TurnDetector:
    def __init__(self, repo_id="videosdk-live/Namo-Turn-Detector-v1-Spanish"):
        """
        Initializes the detector by downloading the model and tokenizer
        from the Hugging Face Hub.
        """
        print(f"Loading model from repo: {repo_id}")
        
        # Download the model and tokenizer from the Hub
        # Authentication is handled automatically if you are logged in
        model_path = hf_hub_download(repo_id=repo_id, filename="model_quant.onnx")
        self.tokenizer = AutoTokenizer.from_pretrained(repo_id)
        
        # Set up the ONNX Runtime inference session
        self.session = ort.InferenceSession(model_path)
        self.max_length = 512
        print("β
 Model and tokenizer loaded successfully.")
    def predict(self, text: str) -> tuple:
        """
        Predicts if a given text utterance is the end of a turn.
        Returns (predicted_label, confidence) where:
        - predicted_label: 0 for "Not End of Turn", 1 for "End of Turn"
        - confidence: confidence score between 0 and 1
        """
        # Tokenize the input text
        inputs = self.tokenizer(
            text,
            truncation=True,
            max_length=self.max_length,
            return_tensors="np"
        )
        
        # Prepare the feed dictionary for the ONNX model
        feed_dict = {
            "input_ids": inputs["input_ids"],
            "attention_mask": inputs["attention_mask"]
        }
        
        # Run inference
        outputs = self.session.run(None, feed_dict)
        logits = outputs[0]
        probabilities = self._softmax(logits[0])
        predicted_label = np.argmax(probabilities)
        confidence = float(np.max(probabilities))
        return predicted_label, confidence
    def _softmax(self, x, axis=None):
        if axis is None:
            axis = -1
        exp_x = np.exp(x - np.max(x, axis=axis, keepdims=True))
        return exp_x / np.sum(exp_x, axis=axis, keepdims=True)
# --- Example Usage ---
if __name__ == "__main__":
    detector = TurnDetector()
    
    sentences = [
        "En el NeotrΓ³pico, e, crecen de forma silvestre alrededor de 790 especies.",      # Expected: End of Turn
        "Tres de la madrugada se conoce como tritio y contiene un protΓ³n y..." # Expected: Not End of Turn
    ]
    
    for sentence in sentences:
        predicted_label, confidence = detector.predict(sentence)
        result = "End of Turn" if predicted_label == 1 else "Not End of Turn"
        print(f"'{sentence}' -> {result} (confidence: {confidence:.3f})")
        print("-" * 50)
```
## π€ VideoSDK Agents Integration
Integrate this turn detector directly with VideoSDK Agents for production-ready conversational AI applications.
```python
from videosdk_agents import NamoTurnDetectorV1, pre_download_namo_turn_v1_model
#download model
pre_download_namo_turn_v1_model(language="es")
# Initialize Spanish turn detector for VideoSDK Agents
turn_detector = NamoTurnDetectorV1(language="es")
```
> π [**Complete Integration Guide**](https://docs.videosdk.live/ai_agents/plugins/namo-turn-detector) - Learn how to use `NamoTurnDetectorV1` with VideoSDK Agents
## π Citation
```bibtex
@model{namo_turn_detector_es_2025,
  title={Namo Turn Detector v1: Spanish},
  author={VideoSDK Team},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/videosdk-live/Namo-Turn-Detector-v1-Spanish},
  note={ONNX-optimized DistilBERT for turn detection in Spanish}
}
```
## π License
This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.
<div align="center">
**Made with β€οΈ by the VideoSDK Team**
[](https://videosdk.live)
</div> | 
