File size: 20,266 Bytes
fe64bad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import os
import imageio
import sys
sys.path.append('.')
import numpy as np
import torch
import torch.nn.functional as F
from tqdm import tqdm
from src.visualize.anim import plot_3d_motion_dico, load_anim
import clip
from PIL import Image
import pickle
import src.utils.rotation_conversions as geometry
from textwrap import wrap
import shutil
import subprocess as sp
from copy import deepcopy
GPU_MINIMUM_MEMORY = 5500
def stack_images(real, real_gens, gen):
nleft_cols = len(real_gens) + 1
print("Stacking frames..")
allframes = np.concatenate((real[:, None, ...], *[x[:, None, ...] for x in real_gens], gen), 1)
nframes, nspa, nats, h, w, pix = allframes.shape
blackborder = np.zeros((w//30, h*nats, pix), dtype=allframes.dtype)
frames = []
for frame_idx in tqdm(range(nframes)):
columns = np.vstack(allframes[frame_idx].transpose(1, 2, 3, 4, 0)).transpose(3, 1, 0, 2)
frame = np.concatenate((*columns[0:nleft_cols], blackborder, *columns[nleft_cols:]), 0).transpose(1, 0, 2)
frames.append(frame)
return np.stack(frames)
def stack_gen_and_images(gen, images):
# nleft_cols = len(real_gens) + 1
print("Stacking frames..")
allframes = np.concatenate((images, gen), 2)
nframes, nspa, nats, h, w, pix = allframes.shape
blackborder = np.zeros((w//30, h*nats, pix), dtype=allframes.dtype)
frames = []
for frame_idx in tqdm(range(nframes)):
columns = np.vstack(allframes[frame_idx].transpose(1, 2, 3, 4, 0)).transpose(3, 1, 0, 2)
frame = np.concatenate((columns[:]), 0).transpose(1, 0, 2)
frames.append(frame)
return np.stack(frames)
def stack_gen_only(gen):
# nleft_cols = len(real_gens) + 1
print("Stacking frames..")
# allframes = np.concatenate((real[:, None, ...], *[x[:, None, ...] for x in real_gens], gen), 1)
allframes = gen
nframes, nspa, nats, h, w, pix = allframes.shape
blackborder = np.zeros((w//30, h*nats, pix), dtype=allframes.dtype)
frames = []
for frame_idx in tqdm(range(nframes)):
columns = np.vstack(allframes[frame_idx].transpose(1, 2, 3, 4, 0)).transpose(3, 1, 0, 2)
frame = np.concatenate((columns[:]), 0).transpose(1, 0, 2)
frames.append(frame)
return np.stack(frames)
def generate_by_video(visualization, reconstructions, generation,
label_to_action_name, params, nats, nspa, tmp_path, image_pathes=None, mode=None):
# shape : (17, 3, 4, 480, 640, 3)
# (nframes, row, column, h, w, 3)
fps = params["fps"]
params = params.copy()
if "output_xyz" in visualization or "output_xyz" in generation:
outputkey = "output_xyz"
params["pose_rep"] = "xyz"
else:
outputkey = "poses"
keep = [outputkey, "lengths", "y"]
def _to_np(x):
if type(x).__module__ == np.__name__:
return x
else: # assume tensor
return x.data.cpu().numpy()
visu = {key: _to_np(visualization[key]) for key in keep if key in visualization.keys()}
recons = {mode: {key: _to_np(reconstruction[key]) for key in keep if key in reconstruction.keys()}
for mode, reconstruction in reconstructions.items()}
gener = {key: _to_np(generation[key]) for key in keep if key in generation.keys()}
def get_palette(i, nspa):
if mode == 'edit' and i < 3:
return 'orange'
elif mode == 'interp' and i in [0, nspa-1]:
return 'orange'
return 'blue'
if(len(visu) > 0):
lenmax = max(gener["lengths"].max(),
visu["lengths"].max())
else:
lenmax = gener["lengths"].max()
timesize = lenmax + 5
# if params['appearance_mode'] == 'motionclip':
# timesize = lenmax + 20
import multiprocessing
def pool_job_with_desc(pool, iterator, desc, max_, save_path_format, isij):
with tqdm(total=max_, desc=desc.format("Render")) as pbar:
for _ in pool.imap_unordered(plot_3d_motion_dico, iterator):
pbar.update()
if isij:
array = np.stack([[load_anim(save_path_format.format(i, j), timesize)
for j in range(nats)]
for i in tqdm(range(nspa), desc=desc.format("Load"))])
return array.transpose(2, 0, 1, 3, 4, 5)
else:
array = np.stack([load_anim(save_path_format.format(i), timesize)
for i in tqdm(range(nats), desc=desc.format("Load"))])
return array.transpose(1, 0, 2, 3, 4)
with multiprocessing.Pool() as pool:
# Generated samples
save_path_format = os.path.join(tmp_path, "gen_{}_{}.gif")
iterator = ((gener[outputkey][i, j],
gener["lengths"][i, j],
save_path_format.format(i, j),
# params, {"title": f"gen: {label_to_action_name(gener['y'][i, j])}", "interval": 1000/fps})
params, {"title": f"{label_to_action_name(gener['y'][i, j])}", "interval": 1000/fps, "palette": get_palette(i, nspa)})
for j in range(nats) for i in range(nspa))
gener["frames"] = pool_job_with_desc(pool, iterator,
"{} the generated samples",
nats*nspa,
save_path_format,
True)
# Make frames with no title blank
frames_no_title = gener['y'] == ''
gener["frames"][:, frames_no_title] = gener["frames"][:, 0, 0:1, 0:1, 0:1] # cast the corner pixel value for all blank box
# Real samples
if len(visu) > 0:
save_path_format = os.path.join(tmp_path, "real_{}.gif")
iterator = ((visu[outputkey][i],
visu["lengths"][i],
save_path_format.format(i),
params, {"title": f"real: {label_to_action_name(visu['y'][i])}", "interval": 1000/fps})
for i in range(nats))
visu["frames"] = pool_job_with_desc(pool, iterator,
"{} the real samples",
nats,
save_path_format,
False)
for mode, recon in recons.items():
# Reconstructed samples
save_path_format = os.path.join(tmp_path, f"reconstructed_{mode}_" + "{}.gif")
iterator = ((recon[outputkey][i],
recon["lengths"][i],
save_path_format.format(i),
params, {"title": f"recons: {label_to_action_name(recon['y'][i])}",
"interval": 1000/fps})
for i in range(nats))
recon["frames"] = pool_job_with_desc(pool, iterator,
"{} the reconstructed samples",
nats,
save_path_format,
False)
if image_pathes is not None:
# visu["frames"] -> [timesize(65), nspa(n_samples), nats(1), h(290), w(260), n_ch(3)]
assert nats == 1
assert nspa == len(image_pathes)
h, w = gener["frames"].shape[3:5]
image_frames = []
for im_path in image_pathes:
im = Image.open(im_path).resize((w, h))
image_frames.append(np.tile(np.expand_dims(np.asarray(im)[..., :3], axis=(0, 1, 2)), (timesize, 1, 1, 1, 1, 1)))
image_frames = np.concatenate(image_frames, axis=1)
assert image_frames.shape == gener["frames"].shape
return stack_gen_and_images(gener["frames"], image_frames)
if len(visu) == 0:
frames = stack_gen_only(gener["frames"])
else:
frames = stack_images(visu["frames"], [recon["frames"] for recon in recons.values()], gener["frames"])
return frames
def generate_by_video_sequences(visualization, label_to_action_name, params, nats, nspa, tmp_path):
# shape : (17, 3, 4, 480, 640, 3)
# (nframes, row, column, h, w, 3)
fps = params["fps"]
if "output_xyz" in visualization:
outputkey = "output_xyz"
params["pose_rep"] = "xyz"
else:
outputkey = "poses"
keep = [outputkey, "lengths", "y"]
visu = {key: visualization[key].data.cpu().numpy() for key in keep}
lenmax = visu["lengths"].max()
timesize = lenmax + 5
import multiprocessing
def pool_job_with_desc(pool, iterator, desc, max_, save_path_format):
with tqdm(total=max_, desc=desc.format("Render")) as pbar:
for _ in pool.imap_unordered(plot_3d_motion_dico, iterator):
pbar.update()
array = np.stack([[load_anim(save_path_format.format(i, j), timesize)
for j in range(nats)]
for i in tqdm(range(nspa), desc=desc.format("Load"))])
return array.transpose(2, 0, 1, 3, 4, 5)
with multiprocessing.Pool() as pool:
# Real samples
save_path_format = os.path.join(tmp_path, "real_{}_{}.gif")
iterator = ((visu[outputkey][i, j],
visu["lengths"][i, j],
save_path_format.format(i, j),
params, {"title": f"real: {label_to_action_name(visu['y'][i, j])}", "interval": 1000/fps})
for j in range(nats) for i in range(nspa))
visu["frames"] = pool_job_with_desc(pool, iterator,
"{} the real samples",
nats,
save_path_format)
frames = stack_images_sequence(visu["frames"])
return frames
def viz_clip_text(model, text_grid, epoch, params, folder):
""" Generate & viz samples """
# visualize with joints3D
model.outputxyz = True
print(f"Visualization of the epoch {epoch}")
# noise_same_action = params["noise_same_action"]
# noise_diff_action = params["noise_diff_action"]
fact = params["fact_latent"]
figname = params["figname"].format(epoch)
classes = np.array(text_grid, dtype=str)
h, w = classes.shape
texts = classes.reshape([-1])
clip_tokens = clip.tokenize(texts).to(params['device'])
clip_features = model.clip_model.encode_text(clip_tokens).float().unsqueeze(0)
gendurations = torch.ones((h*w, 1), dtype=int) * params['num_frames']
# generate the repr (joints3D/pose etc)
model.eval()
with torch.no_grad():
generation = model.generate(clip_features, gendurations,
is_amass=True,
is_clip_features=True)
generation['y'] = texts
for key, val in generation.items():
if len(generation[key].shape) == 1:
generation[key] = val.reshape(h, w)
else:
generation[key] = val.reshape(h, w, *val.shape[1:])
f_name = params['input_file']
if os.path.isfile(params['input_file']):
f_name = os.path.basename(params['input_file'].replace('.txt', ''))
finalpath = os.path.join(folder, 'clip_text_{}_{}'.format(f_name, 'trans_' if params['vertstrans'] else '') + figname + ".gif")
tmp_path = os.path.join(folder, f"clip_text_subfigures_{figname}")
os.makedirs(tmp_path, exist_ok=True)
# save_pkl(generation['output'], generation['output_xyz'], texts, finalpath.replace('.gif', '.pkl'))
print("Generate the videos..")
frames = generate_by_video({}, {}, generation,
lambda x: str(x), params, w, h, tmp_path, mode='text')
print(f"Writing video [{finalpath}]")
imageio.mimsave(finalpath, frames, fps=params["fps"])
def viz_clip_interp(model, datasets, interp_csv, num_stops, epoch, params, folder):
""" Generate & viz samples """
# visualize with joints3D
model.outputxyz = True
print(f"Visualization of the epoch {epoch}")
figname = params["figname"].format(epoch)
motion_collection = get_motion_text_mapping(datasets)
# prepare motion representations
all_clip_features = []
all_texts = []
for line in interp_csv:
# Get CLIP features
texts = [line['start'], line['end']]
retrieved_motions = retrieve_motions(datasets, motion_collection, texts, params['device'])
clip_features = encode_motions(model, retrieved_motions, params['device'])
# Make interp
end_factor = np.linspace(0., 1., num=num_stops)
start_factor = 1. - end_factor
interp_features = [(start_factor[i]*clip_features[0]) + (end_factor[i]*clip_features[1]) for i in range(num_stops)]
all_clip_features.append(torch.stack(interp_features))
texts = texts[:1] + [' '] * (num_stops-2) + texts[-1:]
all_texts.append(texts)
all_clip_features = torch.transpose(torch.stack(all_clip_features, axis=0), 0, 1)
all_texts = np.array(all_texts).T
h, w = all_clip_features.shape[:2]
gendurations = torch.ones((h*w, 1), dtype=int) * params['num_frames']
# generate the repr (joints3D/pose etc)
model.eval()
with torch.no_grad():
generation = model.generate(all_clip_features, gendurations,
is_amass=True,
is_clip_features=True)
generation['y'] = all_texts.reshape([-1])
for key, val in generation.items():
if len(generation[key].shape) == 1:
generation[key] = val.reshape(h, w)
else:
generation[key] = val.reshape(h, w, *val.shape[1:])
if os.path.isfile(params['input_file']):
f_name = os.path.basename(params['input_file'].replace('.csv', ''))
finalpath = os.path.join(folder, f'clip_edit_{f_name}_' + figname + ".gif")
tmp_path = os.path.join(folder, f"clip_edit_subfigures_{figname}")
os.makedirs(tmp_path, exist_ok=True)
print("Generate the videos..")
frames = generate_by_video({}, {}, generation,
lambda x: str(x), params, w, h, tmp_path, mode='interp')
print(f"Writing video [{finalpath}]")
imageio.mimsave(finalpath, frames, fps=params["fps"])
def viz_clip_edit(model, datasets, edit_csv, epoch, params, folder):
""" Generate & viz samples """
# visualize with joints3D
model.outputxyz = True
print(f"Visualization of the epoch {epoch}")
figname = params["figname"].format(epoch)
motion_collection = get_motion_text_mapping(datasets)
# prepare motion representations
all_clip_features = []
all_texts = []
for line in edit_csv:
# Get CLIP features
texts = [line['base'], line['v_start'], line['v_end']]
if line['motion_source'] == 'data':
retrieved_motions = retrieve_motions(datasets, motion_collection, texts, params['device'])
clip_features = encode_motions(model, retrieved_motions, params['device'])
elif line['motion_source'] == 'text':
clip_tokens = clip.tokenize(texts).to(params['device'])
clip_features = model.clip_model.encode_text(clip_tokens).float()
else:
raise ValueError
# Make edit
result_features = clip_features[0] - clip_features[1] + clip_features[2]
all_clip_features.append(torch.cat([clip_features, result_features.unsqueeze(0)]))
texts.append('Result')
all_texts.append(texts)
all_clip_features = torch.transpose(torch.stack(all_clip_features, axis=0), 0, 1)
all_texts = np.array(all_texts).T
h, w = all_clip_features.shape[:2]
gendurations = torch.ones((h*w, 1), dtype=int) * params['num_frames']
# generate the repr (joints3D/pose etc)
model.eval()
with torch.no_grad():
generation = model.generate(all_clip_features, gendurations,
is_amass=True,
is_clip_features=True)
generation['y'] = all_texts.reshape([-1])
for key, val in generation.items():
if len(generation[key].shape) == 1:
generation[key] = val.reshape(h, w)
else:
generation[key] = val.reshape(h, w, *val.shape[1:])
if os.path.isfile(params['input_file']):
f_name = os.path.basename(params['input_file'].replace('.csv', ''))
finalpath = os.path.join(folder, f'clip_edit_{f_name}_' + figname + ".gif")
tmp_path = os.path.join(folder, f"clip_edit_subfigures_{figname}")
os.makedirs(tmp_path, exist_ok=True)
print("Generate the videos..")
frames = generate_by_video({}, {}, generation,
lambda x: str(x), params, w, h, tmp_path, mode='edit')
print(f"Writing video [{finalpath}]")
imageio.mimsave(finalpath, frames, fps=params["fps"])
def stack_images_sequence(visu):
print("Stacking frames..")
allframes = visu
nframes, nspa, nats, h, w, pix = allframes.shape
frames = []
for frame_idx in tqdm(range(nframes)):
columns = np.vstack(allframes[frame_idx].transpose(1, 2, 3, 4, 0)).transpose(3, 1, 0, 2)
frame = np.concatenate(columns).transpose(1, 0, 2)
frames.append(frame)
return np.stack(frames)
def get_gpu_device():
command = "nvidia-smi --query-gpu=memory.free --format=csv"
memory_free_info = sp.check_output(command.split()).decode('ascii').split('\n')[:-1][1:]
memory_free_values = [int(x.split()[0]) for i, x in enumerate(memory_free_info)]
for gpu_idx, free_mem in enumerate(memory_free_values):
if free_mem > GPU_MINIMUM_MEMORY:
return gpu_idx
Exception('No GPU with required memory')
def get_motion_text_mapping(datasets):
print('Building text-motion mapping...')
split_names = list(datasets.keys())
collection_path = datasets[split_names[0]].datapath.replace('.pt', '_text_labels.txt')
if len(split_names) > 1:
assert split_names[0] in os.path.basename(collection_path)
_base = os.path.basename(collection_path).replace(split_names[0], 'all')
collection_path = os.path.join(os.path.dirname(collection_path), _base)
cache_path = collection_path.replace('.txt', '.npy')
# load if exists
word = 'Loading' if os.path.isfile(cache_path) else 'Saving'
print('{} list of text labels in current dataset to [{}]:'.format(word, collection_path))
print('Look it up next time you want to retrieve new motions using textual labels.')
if os.path.isfile(cache_path):
return np.load(cache_path, allow_pickle=True)[None][0]
motion_collection = {}
for split_name, data in datasets.items():
for i, d in tqdm(enumerate(data)):
motion_collection[d['clip_text']] = motion_collection.get(d['clip_text'], []) + [(split_name, i)]
with open(collection_path, 'w') as fw:
text_labels = sorted(list(motion_collection.keys()))
fw.write('\n'.join(text_labels) + '\n')
np.save(cache_path, motion_collection)
return motion_collection
def retrieve_motions(datasets, motion_collection, texts, device):
retrieved_motions = []
for txt in texts:
_split, _index = motion_collection[txt][0]
retrieved_motions.append(datasets[_split][_index]['inp'].unsqueeze(0).to(device))
return torch.cat(retrieved_motions, axis=0)
def encode_motions(model, motions, device):
return model.encoder({'x': motions,
'y': torch.zeros(motions.shape[0], dtype=int, device=device),
'mask': model.lengths_to_mask(torch.ones(motions.shape[0], dtype=int, device=device) * 60)})["mu"]
|