|
import os
|
|
import torch
|
|
|
|
from torch.utils.data import DataLoader
|
|
from src.utils.trainer import train
|
|
from src.utils.tensors import collate
|
|
import src.utils.fixseed
|
|
|
|
from src.utils.get_model_and_data import get_model_and_data
|
|
|
|
from src.parser.checkpoint import parser
|
|
from lion_pytorch import Lion
|
|
|
|
|
|
def add_epochs(model, datasets, parameters, optimizer, origepoch):
|
|
dataset = datasets["train"]
|
|
train_iterator = DataLoader(dataset, batch_size=parameters["batch_size"],
|
|
shuffle=True, num_workers=8, collate_fn=collate)
|
|
|
|
for epoch in range(1, parameters["num_epochs"]+1):
|
|
dict_loss = train(model, optimizer, train_iterator, model.device)
|
|
|
|
for key in dict_loss.keys():
|
|
dict_loss[key] /= len(train_iterator)
|
|
|
|
print(f"Epoch {epoch}, train losses: {dict_loss}")
|
|
|
|
if ((epoch % parameters["snapshot"]) == 0) or (epoch == parameters["num_epochs"]):
|
|
checkpoint_path = os.path.join(parameters["folder"],
|
|
'retraincheckpoint_orig_{:04d}_added_{:04d}.pth.tar'.format(origepoch, epoch))
|
|
print('Saving checkpoint {}'.format(checkpoint_path))
|
|
torch.save(model.state_dict(), checkpoint_path)
|
|
|
|
|
|
def main():
|
|
|
|
parameters, folder, checkpointname, epoch = parser()
|
|
device = parameters["device"]
|
|
|
|
model, datasets = get_model_and_data(parameters)
|
|
datasets.pop("test")
|
|
|
|
print("Restore weights..")
|
|
checkpointpath = os.path.join(folder, checkpointname)
|
|
state_dict = torch.load(checkpointpath, map_location=device)
|
|
model.load_state_dict(state_dict)
|
|
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=parameters["lr"])
|
|
|
|
|
|
print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
|
|
print("Training model..")
|
|
add_epochs(model, datasets, parameters, optimizer, epoch)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|