smog / src /train /train.py
vonexel's picture
add: src
fe64bad verified
import os
import sys
sys.path.append('.')
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from src.train.trainer import train
from src.utils.tensors import collate
import src.utils.fixseed # noqa
from src.parser.training import parser
from src.utils.get_model_and_data import get_model_and_data
from lion_pytorch import Lion
def do_epochs(model, datasets, parameters, optimizer, writer):
dataset = datasets["train"]
train_iterator = DataLoader(dataset, batch_size=parameters["batch_size"],
shuffle=True, num_workers=8, collate_fn=collate)
logpath = os.path.join(parameters["folder"], "training.log")
with open(logpath, "w") as logfile:
for epoch in range(1, parameters["num_epochs"]+1):
dict_loss = train(model, optimizer, train_iterator, model.device)
for key in dict_loss.keys():
dict_loss[key] /= len(train_iterator)
writer.add_scalar(f"Loss/{key}", dict_loss[key], epoch)
epochlog = f"Epoch {epoch}, train losses: {dict_loss}"
print(epochlog)
print(epochlog, file=logfile)
if ((epoch % parameters["snapshot"]) == 0) or (epoch == parameters["num_epochs"]):
checkpoint_path = os.path.join(parameters["folder"],
'checkpoint_{:04d}.pth.tar'.format(epoch))
print('Saving checkpoint {}'.format(checkpoint_path))
if parameters.get('clip_training', '') == '':
state_dict_wo_clip = {k: v for k,v in model.state_dict().items() if not k.startswith('clip_model.')}
else:
state_dict_wo_clip = model.state_dict()
torch.save(state_dict_wo_clip, checkpoint_path)
writer.flush()
if __name__ == '__main__':
# parse options
parameters = parser()
# logging tensorboard
writer = SummaryWriter(log_dir=parameters["folder"])
device = parameters["device"] #"cuda:0" if torch.cuda.is_available() else "cpu" # If using GPU then use mixed precision training.
model, datasets = get_model_and_data(parameters)
# optimizer: AdamW or Lion
optimizer = torch.optim.AdamW(model.parameters(), lr=parameters["lr"])
# optimizer = Lion(model.parameters(), lr=parameters["lr"])
print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
print("Training model..")
do_epochs(model, datasets, parameters, optimizer, writer)
writer.close()