import os from .base import argparse, adding_cuda, load_args def parser(): parser = argparse.ArgumentParser() parser.add_argument("checkpointname") group = parser.add_argument_group('Finetunning options (what should change)') group.add_argument("--num_epochs", type=int, help="new number of epochs of training") group.add_argument("--batch_size", type=int, help="size of the batches") group.add_argument("--lr", type=float, help="AdamW or Lion: learning rate") group.add_argument("--snapshot", type=int, help="frequency of saving model/viz") group.add_argument("--num_frames", default=-2, type=int, help="number of frames or -1 => whole, -2 => random between min_len and total") group.add_argument("--min_len", default=60, type=int, help="number of frames minimum per sequence or -1") group.add_argument("--max_len", default=100, type=int, help="number of frames maximum per sequence or -1") opt = parser.parse_args() folder, checkpoint = os.path.split(opt.checkpointname) parameters = load_args(os.path.join(folder, "opt.yaml")) parameters["folder"] = folder adding_cuda(parameters) epoch = int(checkpoint.split("_")[-1].split('.')[0]) return parameters, folder, checkpoint, epoch