Qwen3-VL-2B-Thinking (Abliterated)

A 2-billion parameter vision-language model from the Qwen3-VL family, featuring abliterated safety filters for unrestricted generation and enhanced reasoning capabilities. This model combines visual understanding with text generation, enabling multimodal analysis and creative applications.

Model Description

Qwen3-VL-2B-Thinking-Abliterated is a modified version of Qwen3-VL-2B optimized for:

  • Vision-Language Understanding: Process images and generate contextual text responses
  • Multimodal Reasoning: Analyze visual content with detailed explanations
  • Unrestricted Generation: Abliterated safety layers for creative freedom
  • Thinking Mode: Enhanced reasoning and step-by-step analysis capabilities
  • Efficient Inference: 2B parameters for consumer hardware deployment

Key Features:

  • Visual question answering (VQA)
  • Image captioning and description
  • Visual reasoning and analysis
  • Multimodal conversation
  • Creative image interpretation

Repository Contents

qwen3-vl-2b-thinking/
โ”œโ”€โ”€ qwen3-vl-2b-thinking-abliterated.safetensors     # PyTorch model (4.0GB)
โ””โ”€โ”€ qwen3-vl-2b-thinking-abliterated-f16.gguf        # GGUF FP16 quantized (3.3GB)

Total Repository Size: ~7.3GB

Model Formats

File Format Size Use Case
qwen3-vl-2b-thinking-abliterated.safetensors SafeTensors 4.0GB Transformers, PyTorch
qwen3-vl-2b-thinking-abliterated-f16.gguf GGUF FP16 3.3GB llama.cpp, Ollama

Hardware Requirements

Minimum Requirements

  • VRAM: 6GB (GGUF quantized inference)
  • RAM: 8GB system memory
  • Disk Space: 8GB available
  • GPU: CUDA-compatible (RTX 2060+) or Apple Silicon

Recommended Requirements

  • VRAM: 8-12GB (SafeTensors full precision)
  • RAM: 16GB system memory
  • Disk Space: 10GB available
  • GPU: RTX 3060 Ti+ or Apple M1 Pro+

Performance Estimates

  • GGUF on 8GB VRAM: ~15-25 tokens/sec
  • SafeTensors on 12GB VRAM: ~20-35 tokens/sec
  • CPU inference: ~2-5 tokens/sec (not recommended)

Usage Examples

Using Transformers (SafeTensors)

from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from PIL import Image
import torch

# Load model and processor
model_path = "E:/huggingface/qwen3-vl-2b-thinking"
model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_path)

# Load image
image = Image.open("image.jpg")

# Create conversation
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text", "text": "Describe this image in detail."}
        ]
    }
]

# Process and generate
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[text], images=[image], return_tensors="pt").to("cuda")

# Generate response
with torch.no_grad():
    outputs = model.generate(**inputs, max_new_tokens=256)
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]

print(response)

Using llama.cpp (GGUF)

# Download llama.cpp with vision support
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make

# Run inference with image
./llama-cli \
  --model "E:/huggingface/qwen3-vl-2b-thinking/qwen3-vl-2b-thinking-abliterated-f16.gguf" \
  --image "image.jpg" \
  --prompt "Describe this image:" \
  --n-gpu-layers 32 \
  --ctx-size 4096

Using Ollama (GGUF)

# Create Modelfile
cat > Modelfile <<EOF
FROM E:/huggingface/qwen3-vl-2b-thinking/qwen3-vl-2b-thinking-abliterated-f16.gguf
PARAMETER temperature 0.7
PARAMETER top_p 0.9
EOF

# Create Ollama model
ollama create qwen3-vl-thinking -f Modelfile

# Run interactive session
ollama run qwen3-vl-thinking "Analyze this image: image.jpg"

Visual Question Answering

# Detailed analysis with thinking mode
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text", "text": "Think step-by-step and explain what's happening in this image."}
        ]
    }
]

# Model will provide detailed reasoning in its response

Model Specifications

Architecture

  • Model Type: Vision-Language Transformer
  • Base Architecture: Qwen3-VL
  • Parameters: 2 billion
  • Modifications: Abliterated safety layers, enhanced reasoning
  • Vision Encoder: ViT-based image encoder
  • Text Decoder: Qwen3 transformer decoder

Technical Details

  • Precision: FP16 (SafeTensors), Quantized (GGUF)
  • Context Length: 4096 tokens
  • Image Resolution: 448x448 (default), up to 1024x1024
  • Vocabulary Size: ~151,000 tokens
  • Training: Multimodal pretraining + instruction tuning

Supported Tasks

  • Image captioning
  • Visual question answering
  • Scene understanding
  • Object detection (descriptive)
  • Visual reasoning
  • Image-to-text generation
  • Multimodal conversation

Performance Tips

Optimization Strategies

  1. VRAM Optimization:

    # Use 8-bit quantization
    model = Qwen2VLForConditionalGeneration.from_pretrained(
        model_path,
        load_in_8bit=True,
        device_map="auto"
    )
    
  2. Image Preprocessing:

    # Resize large images
    from PIL import Image
    image = Image.open("large_image.jpg")
    image = image.resize((448, 448))
    
  3. Batch Processing:

    # Process multiple images efficiently
    images = [Image.open(f"image{i}.jpg") for i in range(4)]
    inputs = processor(images=images, text=prompts, return_tensors="pt")
    
  4. GGUF Performance:

    • Use --n-gpu-layers 32 for GPU acceleration
    • Adjust --ctx-size based on available VRAM
    • Use --threads for CPU optimization

Generation Parameters

generation_config = {
    "max_new_tokens": 256,
    "temperature": 0.7,
    "top_p": 0.9,
    "do_sample": True,
    "repetition_penalty": 1.1
}

outputs = model.generate(**inputs, **generation_config)

Abliteration Notice

This model has been abliterated (safety filters removed) for:

  • Unrestricted creative content generation
  • Research and experimentation
  • Artistic applications without content restrictions

Important: Users are responsible for ethical use and compliance with local laws. This model may generate unrestricted content.

License

Licensed under Apache 2.0. Free for commercial and research use with attribution.

Key provisions:

  • โœ… Commercial use permitted
  • โœ… Modification and distribution allowed
  • โœ… Private use permitted
  • โš ๏ธ Provide attribution and license notice
  • โš ๏ธ State changes if modified

Full license: Apache License 2.0

Citation

@misc{qwen3vl2b-thinking-abliterated,
  title={Qwen3-VL-2B-Thinking-Abliterated},
  author={Qwen Team and Community Contributors},
  year={2025},
  howpublished={\url{https://huggingface.co/Qwen}},
  note={Abliterated vision-language model with enhanced reasoning}
}

Official Resources

Acknowledgments

  • Qwen Team: Original Qwen3-VL architecture and pretraining
  • Community: Abliteration techniques and reasoning enhancements
  • Hugging Face: Model hosting and transformers library
Downloads last month
141
GGUF
Model size
2B params
Architecture
qwen3vl
Hardware compatibility
Log In to view the estimation

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Collection including wangkanai/qwen3-vl-2b-thinking