Qwen3-VL-2B-Thinking (Abliterated)
A 2-billion parameter vision-language model from the Qwen3-VL family, featuring abliterated safety filters for unrestricted generation and enhanced reasoning capabilities. This model combines visual understanding with text generation, enabling multimodal analysis and creative applications.
Model Description
Qwen3-VL-2B-Thinking-Abliterated is a modified version of Qwen3-VL-2B optimized for:
- Vision-Language Understanding: Process images and generate contextual text responses
- Multimodal Reasoning: Analyze visual content with detailed explanations
- Unrestricted Generation: Abliterated safety layers for creative freedom
- Thinking Mode: Enhanced reasoning and step-by-step analysis capabilities
- Efficient Inference: 2B parameters for consumer hardware deployment
Key Features:
- Visual question answering (VQA)
- Image captioning and description
- Visual reasoning and analysis
- Multimodal conversation
- Creative image interpretation
Repository Contents
qwen3-vl-2b-thinking/
โโโ qwen3-vl-2b-thinking-abliterated.safetensors # PyTorch model (4.0GB)
โโโ qwen3-vl-2b-thinking-abliterated-f16.gguf # GGUF FP16 quantized (3.3GB)
Total Repository Size: ~7.3GB
Model Formats
| File | Format | Size | Use Case |
|---|---|---|---|
qwen3-vl-2b-thinking-abliterated.safetensors |
SafeTensors | 4.0GB | Transformers, PyTorch |
qwen3-vl-2b-thinking-abliterated-f16.gguf |
GGUF FP16 | 3.3GB | llama.cpp, Ollama |
Hardware Requirements
Minimum Requirements
- VRAM: 6GB (GGUF quantized inference)
- RAM: 8GB system memory
- Disk Space: 8GB available
- GPU: CUDA-compatible (RTX 2060+) or Apple Silicon
Recommended Requirements
- VRAM: 8-12GB (SafeTensors full precision)
- RAM: 16GB system memory
- Disk Space: 10GB available
- GPU: RTX 3060 Ti+ or Apple M1 Pro+
Performance Estimates
- GGUF on 8GB VRAM: ~15-25 tokens/sec
- SafeTensors on 12GB VRAM: ~20-35 tokens/sec
- CPU inference: ~2-5 tokens/sec (not recommended)
Usage Examples
Using Transformers (SafeTensors)
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from PIL import Image
import torch
# Load model and processor
model_path = "E:/huggingface/qwen3-vl-2b-thinking"
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_path)
# Load image
image = Image.open("image.jpg")
# Create conversation
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image in detail."}
]
}
]
# Process and generate
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[text], images=[image], return_tensors="pt").to("cuda")
# Generate response
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=256)
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
print(response)
Using llama.cpp (GGUF)
# Download llama.cpp with vision support
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make
# Run inference with image
./llama-cli \
--model "E:/huggingface/qwen3-vl-2b-thinking/qwen3-vl-2b-thinking-abliterated-f16.gguf" \
--image "image.jpg" \
--prompt "Describe this image:" \
--n-gpu-layers 32 \
--ctx-size 4096
Using Ollama (GGUF)
# Create Modelfile
cat > Modelfile <<EOF
FROM E:/huggingface/qwen3-vl-2b-thinking/qwen3-vl-2b-thinking-abliterated-f16.gguf
PARAMETER temperature 0.7
PARAMETER top_p 0.9
EOF
# Create Ollama model
ollama create qwen3-vl-thinking -f Modelfile
# Run interactive session
ollama run qwen3-vl-thinking "Analyze this image: image.jpg"
Visual Question Answering
# Detailed analysis with thinking mode
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Think step-by-step and explain what's happening in this image."}
]
}
]
# Model will provide detailed reasoning in its response
Model Specifications
Architecture
- Model Type: Vision-Language Transformer
- Base Architecture: Qwen3-VL
- Parameters: 2 billion
- Modifications: Abliterated safety layers, enhanced reasoning
- Vision Encoder: ViT-based image encoder
- Text Decoder: Qwen3 transformer decoder
Technical Details
- Precision: FP16 (SafeTensors), Quantized (GGUF)
- Context Length: 4096 tokens
- Image Resolution: 448x448 (default), up to 1024x1024
- Vocabulary Size: ~151,000 tokens
- Training: Multimodal pretraining + instruction tuning
Supported Tasks
- Image captioning
- Visual question answering
- Scene understanding
- Object detection (descriptive)
- Visual reasoning
- Image-to-text generation
- Multimodal conversation
Performance Tips
Optimization Strategies
VRAM Optimization:
# Use 8-bit quantization model = Qwen2VLForConditionalGeneration.from_pretrained( model_path, load_in_8bit=True, device_map="auto" )Image Preprocessing:
# Resize large images from PIL import Image image = Image.open("large_image.jpg") image = image.resize((448, 448))Batch Processing:
# Process multiple images efficiently images = [Image.open(f"image{i}.jpg") for i in range(4)] inputs = processor(images=images, text=prompts, return_tensors="pt")GGUF Performance:
- Use
--n-gpu-layers 32for GPU acceleration - Adjust
--ctx-sizebased on available VRAM - Use
--threadsfor CPU optimization
- Use
Generation Parameters
generation_config = {
"max_new_tokens": 256,
"temperature": 0.7,
"top_p": 0.9,
"do_sample": True,
"repetition_penalty": 1.1
}
outputs = model.generate(**inputs, **generation_config)
Abliteration Notice
This model has been abliterated (safety filters removed) for:
- Unrestricted creative content generation
- Research and experimentation
- Artistic applications without content restrictions
Important: Users are responsible for ethical use and compliance with local laws. This model may generate unrestricted content.
License
Licensed under Apache 2.0. Free for commercial and research use with attribution.
Key provisions:
- โ Commercial use permitted
- โ Modification and distribution allowed
- โ Private use permitted
- โ ๏ธ Provide attribution and license notice
- โ ๏ธ State changes if modified
Full license: Apache License 2.0
Citation
@misc{qwen3vl2b-thinking-abliterated,
title={Qwen3-VL-2B-Thinking-Abliterated},
author={Qwen Team and Community Contributors},
year={2025},
howpublished={\url{https://huggingface.co/Qwen}},
note={Abliterated vision-language model with enhanced reasoning}
}
Official Resources
- Qwen Official: https://github.com/QwenLM/Qwen
- Transformers Docs: https://huggingface.co/docs/transformers
- llama.cpp: https://github.com/ggerganov/llama.cpp
- Model Family: https://huggingface.co/Qwen
Acknowledgments
- Qwen Team: Original Qwen3-VL architecture and pretraining
- Community: Abliteration techniques and reasoning enhancements
- Hugging Face: Model hosting and transformers library
- Downloads last month
- 141
16-bit