File size: 5,826 Bytes
16b5211
 
 
 
 
 
 
 
 
 
ce0a5d3
7a163bd
 
 
 
ce0a5d3
 
 
 
7a163bd
 
 
 
 
 
 
ce0a5d3
7a163bd
ce0a5d3
7a163bd
 
 
 
ce0a5d3
7a163bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce0a5d3
 
c819ca5
 
7a163bd
 
c819ca5
7a163bd
c819ca5
7a163bd
c819ca5
7a163bd
c819ca5
7a163bd
 
c819ca5
7a163bd
 
 
 
 
 
 
 
 
 
 
c819ca5
 
7a163bd
 
c819ca5
 
 
 
 
7a163bd
c819ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a163bd
 
 
c819ca5
 
 
7a163bd
c819ca5
 
 
 
 
7a163bd
c819ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a163bd
c819ca5
 
 
 
 
7a163bd
c819ca5
7a163bd
c819ca5
 
7a163bd
 
 
 
 
c819ca5
 
 
 
 
 
 
 
7a163bd
c819ca5
7a163bd
c819ca5
 
 
 
 
7a163bd
c819ca5
 
 
7a163bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
library_name: sentence-transformers
pipeline_tag: feature-extraction
tags:
- sentence-transformers
- feature-extraction
- korean
- legal
---

---
language: ko
license: apache-2.0
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- korean
- legal
- bert
datasets:
- custom
metrics:
- cosine_similarity
widget:
- source_sentence: "์ธํ„ฐ๋„ท ์‚ฌ๊ธฐ ํ”ผํ•ด ์†ํ•ด๋ฐฐ์ƒ ์ฒญ๊ตฌ"
  sentences:
  - "์˜จ๋ผ์ธ ๊ฑฐ๋ž˜ ์‚ฌ๊ธฐ ํ”ผํ•ด ๊ตฌ์ œ"
  - "์ „์ž์ƒ๊ฑฐ๋ž˜ ์‚ฌ๊ธฐ ๋ฏผ์‚ฌ์ฑ…์ž„"
  - "ํ˜•๋ฒ•์ƒ ์‚ฌ๊ธฐ์ฃ„ ๊ตฌ์„ฑ์š”๊ฑด"
- source_sentence: "์ƒ์—ฌ๊ธˆ์„ ์ž„๊ธˆ์œผ๋กœ ์ธ์ •ํ•˜๊ธฐ ์œ„ํ•œ ์š”๊ฑด"
  sentences:
  - "๊ทผ๋กœ์ž ์ž„๊ธˆ ์ฒด๋ถˆ ์†ํ•ด๋ฐฐ์ƒ"
  - "ํ‡ด์ง๊ธˆ ์‚ฐ์ • ๊ธฐ์ดˆ ํ‰๊ท ์ž„๊ธˆ"
  - "๋ถ€๋™์‚ฐ ๋งค๋งค๊ณ„์•ฝ ํ•ด์ œ"
inference:
  parameters:
    task: sentence-similarity
    normalize_embeddings: true
model-index:
- name: Ko-Legal-SBERT
  results:
  - task:
      type: sentence-similarity
      name: Sentence Similarity
    dataset:
      type: custom
      name: Korean Legal Dataset
    metrics:
    - type: cosine_similarity
      value: 0.85
      name: Same Domain Similarity
---

# ๐Ÿ›๏ธ Ko-Legal-SBERT: ํ•œ๊ตญ ๋ฒ•๋ฅ  ํŠนํ™” ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ

[![Inference API](https://img.shields.io/badge/Inference%20API-Ready-green)](https://huggingface.co/woong0322/ko-legal-sbert-finetuned)
[![sentence-transformers](https://img.shields.io/badge/sentence--transformers-compatible-brightgreen)](https://www.sbert.net/)

Ko-Legal-SBERT๋Š” ํ•œ๊ตญ ๋ฒ•๋ฅ  ๋ฌธ์„œ์— ํŠนํ™”๋œ ๋ฌธ์žฅ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. 35,104๊ฐœ์˜ ๊ณ ํ’ˆ์งˆ ๋ฒ•๋ฅ  ํŠธ๋ฆฌํ”Œ์…‹์œผ๋กœ ํŒŒ์ธํŠœ๋‹๋˜์–ด ๋ฒ•๋ฅ  ๋ฌธ์„œ ๊ฐ„์˜ ์˜๋ฏธ์  ์œ ์‚ฌ๋„๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

## ๐Ÿš€ ๋น ๋ฅธ ์‹œ์ž‘

### Inference API ์‚ฌ์šฉ (๊ถŒ์žฅ)

```python
import requests

API_URL = "https://api-inference.huggingface.co/models/woong0322/ko-legal-sbert-finetuned"
headers = {"Authorization": "Bearer YOUR_TOKEN"}

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

# ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
output = query({
    "inputs": "์ธํ„ฐ๋„ท ์‚ฌ๊ธฐ ํ”ผํ•ด ์†ํ•ด๋ฐฐ์ƒ ์ฒญ๊ตฌ"
})
```

### sentence-transformers ์‚ฌ์šฉ

```python
from sentence_transformers import SentenceTransformer
import numpy as np

# ๋ชจ๋ธ ๋กœ๋“œ
model = SentenceTransformer('woong0322/ko-legal-sbert-finetuned')

# ๋ฒ•๋ฅ  ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ
texts = [
    "์ƒ์—ฌ๊ธˆ์„ ์ž„๊ธˆ์œผ๋กœ ์ธ์ •ํ•˜๊ธฐ ์œ„ํ•œ ์š”๊ฑด",
    "ํ‡ด์ง๊ธˆ ์‚ฐ์ •์˜ ๊ธฐ์ดˆ๊ฐ€ ๋˜๋Š” ํ‰๊ท ์ž„๊ธˆ",
    "ํ˜•๋ฒ•์ƒ ์ ˆ๋„์˜ ๋ฒ”์˜์™€ ๊ณ ์˜"
]

embeddings = model.encode(texts)

# ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ
similarity_01 = np.dot(embeddings[0], embeddings[1])  # ๋…ธ๋™๋ฒ• ๊ด€๋ จ: ๋†’์€ ์œ ์‚ฌ๋„
similarity_02 = np.dot(embeddings[0], embeddings[2])  # ๋…ธ๋™๋ฒ• vs ํ˜•๋ฒ•: ๋‚ฎ์€ ์œ ์‚ฌ๋„

print(f"๋…ธ๋™๋ฒ• ๋ฌธ์„œ ๊ฐ„ ์œ ์‚ฌ๋„: {similarity_01:.3f}")  # ์˜ˆ์ƒ: 0.85+
print(f"๋…ธ๋™๋ฒ• vs ํ˜•๋ฒ• ์œ ์‚ฌ๋„: {similarity_02:.3f}")   # ์˜ˆ์ƒ: 0.0 ๊ทผ์ฒ˜
```

## ๐Ÿ“Š ์„ฑ๋Šฅ ํ‰๊ฐ€

| ๋ฉ”ํŠธ๋ฆญ | ์ ์ˆ˜ | ์„ค๋ช… |
|--------|------|------|
| ๋™์ผ ๋ถ„์•ผ ์œ ์‚ฌ๋„ | 0.853 | ๊ฐ™์€ ๋ฒ• ๋ถ„์•ผ ๋ฌธ์„œ ๊ฐ„ ํ‰๊ท  ์œ ์‚ฌ๋„ |
| ๋ถ„์•ผ ๊ฐ„ ๊ตฌ๋ถ„๋„ | 0.023 | ๋‹ค๋ฅธ ๋ฒ• ๋ถ„์•ผ ๊ฐ„ ํ‰๊ท  ์œ ์‚ฌ๋„ (๋‚ฎ์„์ˆ˜๋ก ์ข‹์Œ) |
| ์ „์ฒด ํ’ˆ์งˆ ์ ์ˆ˜ | 95.0/100 | ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ ์ข…ํ•ฉ ํ‰๊ฐ€ |

### ๋ถ„์•ผ๋ณ„ ์„ฑ๋Šฅ
- **๋ฏผ์‚ฌ๋ฒ•**: 36.3% ์ปค๋ฒ„๋ฆฌ์ง€, ๋†’์€ ์ •ํ™•๋„
- **์„ธ๋ฒ•**: 16.4% ์ปค๋ฒ„๋ฆฌ์ง€, ์šฐ์ˆ˜ํ•œ ๊ตฌ๋ถ„ ๋Šฅ๋ ฅ
- **ํ–‰์ •๋ฒ•**: 14.9% ์ปค๋ฒ„๋ฆฌ์ง€, ์•ˆ์ •์  ์„ฑ๋Šฅ
- **ํ˜•์‚ฌ๋ฒ•**: 6.2% ์ปค๋ฒ„๋ฆฌ์ง€, ๋ช…ํ™•ํ•œ ๋ถ„๋ฅ˜

## ๐Ÿ—๏ธ ๋ชจ๋ธ ๊ตฌ์กฐ

- **๋ฒ ์ด์Šค ๋ชจ๋ธ**: jhgan/ko-sbert-nli
- **์ž„๋ฒ ๋”ฉ ์ฐจ์›**: 768
- **์ตœ๋Œ€ ์‹œํ€€์Šค ๊ธธ์ด**: 512 ํ† ํฐ
- **ํ•™์Šต ๋ฐฉ๋ฒ•**: Triplet Loss with Hard Negative Mining

### ํ•™์Šต ๋ฐ์ดํ„ฐ
- **์ด ํŠธ๋ฆฌํ”Œ์…‹**: 35,104๊ฐœ
- **ํ•™์Šต ์˜ˆ์ œ**: 70,208๊ฐœ (Anchor-Positive, Anchor-Negative ์Œ)
- **๋ฐ์ดํ„ฐ ์ถœ์ฒ˜**: ํ•œ๊ตญ ๋ฒ•์› ํŒ๋ก€, ๋ฒ•๋ น ๋ฐ์ดํ„ฐ
- **ํ’ˆ์งˆ ๊ฒ€์ฆ**: 98.6% ๋ฒ•๋ฅ  ํ‚ค์›Œ๋“œ ํฌํ•จ, ์ค‘๋ณต ์ œ๊ฑฐ ์™„๋ฃŒ

## ๐ŸŽฏ ํ™œ์šฉ ๋ถ„์•ผ

### ๐Ÿ’ผ ๋น„์ฆˆ๋‹ˆ์Šค ํ™œ์šฉ
- **๋ฒ•๋ฅ  ๊ฒ€์ƒ‰ ์—”์ง„**: ์˜๋ฏธ ๊ธฐ๋ฐ˜ ํŒ๋ก€/๋ฒ•๋ น ๊ฒ€์ƒ‰
- **๋ฒ•๋ฅ  ์ƒ๋‹ด ์‹œ์Šคํ…œ**: ์œ ์‚ฌ ์‚ฌ๋ก€ ์ž๋™ ์ถ”์ฒœ
- **๊ณ„์•ฝ์„œ ๋ถ„์„**: ์กฐํ•ญ ๊ฐ„ ์œ ์‚ฌ๋„ ๋ฐ ์ค‘๋ณต ๊ฒ€์ถœ
- **์ปดํ”Œ๋ผ์ด์–ธ์Šค**: ๊ทœ์ • ์ค€์ˆ˜ ์—ฌ๋ถ€ ์ž๋™ ๊ฒ€ํ† 

### ๐Ÿ”ฌ ์—ฐ๊ตฌ ํ™œ์šฉ
- **๋ฒ•๋ฅ  AI ์—ฐ๊ตฌ**: ํ•œ๊ตญ์–ด ๋ฒ•๋ฅ  NLP ๋ฒค์น˜๋งˆํฌ
- **ํŒ๋ก€ ๋ถ„์„**: ํŒ๊ฒฐ ํŒจํ„ด ๋ฐ ๊ฒฝํ–ฅ ๋ถ„์„
- **๋ฒ•๋ฅ  ์˜จํ†จ๋กœ์ง€**: ๋ฒ•๋ฅ  ๊ฐœ๋… ๊ฐ„ ๊ด€๊ณ„ ๋ชจ๋ธ๋ง
- **์ž๋™ ๋ถ„๋ฅ˜**: ๋ฒ•๋ฅ  ๋ฌธ์„œ ์นดํ…Œ๊ณ ๋ฆฌ ์ž๋™ ๋ถ„๋ฅ˜

## ๐Ÿ“š ๊ธฐ์ˆ ์  ์„ธ๋ถ€์‚ฌํ•ญ

์ด ๋ชจ๋ธ์€ SentenceTransformers ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ•™์Šต๋˜์—ˆ์œผ๋ฉฐ, ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค:

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## ๐Ÿค ๊ธฐ์—ฌ ๋ฐ ํ”ผ๋“œ๋ฐฑ

์ด ๋ชจ๋ธ์„ ์—ฐ๊ตฌ๋‚˜ ์ƒ์—…์  ๋ชฉ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜์‹ค ๋•Œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ธ์šฉํ•ด์ฃผ์„ธ์š”:

```bibtex
@misc{ko-legal-sbert-2025,
  title={Ko-Legal-SBERT: Korean Legal Domain Specialized Sentence Embedding Model},
  author={woong0322},
  year={2025},
  url={https://huggingface.co/woong0322/ko-legal-sbert-finetuned}
}
```

## ๐Ÿ“„ ๋ผ์ด์„ ์Šค

์ด ๋ชจ๋ธ์€ Apache 2.0 ๋ผ์ด์„ ์Šค ํ•˜์— ๋ฐฐํฌ๋ฉ๋‹ˆ๋‹ค. ์ƒ์—…์  ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ถœ์ฒ˜๋งŒ ๋ช…์‹œํ•˜๋ฉด ์ž์œ ๋กญ๊ฒŒ ์‚ฌ์šฉํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

---

๐Ÿ’ก **์ด ๋ชจ๋ธ์ด ๋„์›€์ด ๋˜์…จ๋‹ค๋ฉด โญ์„ ๋ˆŒ๋Ÿฌ์ฃผ์„ธ์š”!**