File size: 4,903 Bytes
ffc8638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-min_symbols_template_full-deepseek-coder-1.3b-base-ddp-12lr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lemexp-task1-min_symbols_template_full-deepseek-coder-1.3b-base-ddp-12lr

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1895

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0012
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step   | Validation Loss |
|:-------------:|:-------:|:------:|:---------------:|
| 0.387         | 0.2000  | 2907   | 0.3682          |
| 0.3641        | 0.4001  | 5814   | 0.3537          |
| 0.3563        | 0.6001  | 8721   | 0.3494          |
| 0.3467        | 0.8001  | 11628  | 0.3382          |
| 0.3373        | 1.0001  | 14535  | 0.3465          |
| 0.3347        | 1.2002  | 17442  | 0.3315          |
| 0.3396        | 1.4002  | 20349  | 0.3322          |
| 0.3317        | 1.6002  | 23256  | 0.3243          |
| 0.3245        | 1.8002  | 26163  | 0.3237          |
| 0.3219        | 2.0003  | 29070  | 0.3167          |
| 0.3166        | 2.2003  | 31977  | 0.3250          |
| 0.3179        | 2.4003  | 34884  | 0.3165          |
| 0.3142        | 2.6004  | 37791  | 0.3107          |
| 0.3102        | 2.8004  | 40698  | 0.3038          |
| 0.3094        | 3.0004  | 43605  | 0.3081          |
| 0.3039        | 3.2004  | 46512  | 0.2971          |
| 0.3023        | 3.4005  | 49419  | 0.2910          |
| 0.297         | 3.6005  | 52326  | 0.2912          |
| 0.2947        | 3.8005  | 55233  | 0.2958          |
| 0.2925        | 4.0006  | 58140  | 0.2862          |
| 0.2848        | 4.2006  | 61047  | 0.2842          |
| 0.2842        | 4.4006  | 63954  | 0.2797          |
| 0.2815        | 4.6006  | 66861  | 0.2815          |
| 0.2795        | 4.8007  | 69768  | 0.2784          |
| 0.2735        | 5.0007  | 72675  | 0.2715          |
| 0.2685        | 5.2007  | 75582  | 0.2766          |
| 0.2698        | 5.4007  | 78489  | 0.2687          |
| 0.268         | 5.6008  | 81396  | 0.2648          |
| 0.2623        | 5.8008  | 84303  | 0.2647          |
| 0.2613        | 6.0008  | 87210  | 0.2587          |
| 0.2568        | 6.2009  | 90117  | 0.2573          |
| 0.2544        | 6.4009  | 93024  | 0.2553          |
| 0.2519        | 6.6009  | 95931  | 0.2518          |
| 0.2514        | 6.8009  | 98838  | 0.2525          |
| 0.2519        | 7.0010  | 101745 | 0.2512          |
| 0.239         | 7.2010  | 104652 | 0.2441          |
| 0.2407        | 7.4010  | 107559 | 0.2456          |
| 0.2397        | 7.6010  | 110466 | 0.2433          |
| 0.2342        | 7.8011  | 113373 | 0.2364          |
| 0.2329        | 8.0011  | 116280 | 0.2316          |
| 0.2232        | 8.2011  | 119187 | 0.2307          |
| 0.2213        | 8.4012  | 122094 | 0.2294          |
| 0.2223        | 8.6012  | 125001 | 0.2230          |
| 0.2199        | 8.8012  | 127908 | 0.2216          |
| 0.2174        | 9.0012  | 130815 | 0.2211          |
| 0.208         | 9.2013  | 133722 | 0.2193          |
| 0.2089        | 9.4013  | 136629 | 0.2162          |
| 0.2047        | 9.6013  | 139536 | 0.2120          |
| 0.2028        | 9.8013  | 142443 | 0.2098          |
| 0.2005        | 10.0014 | 145350 | 0.2064          |
| 0.1923        | 10.2014 | 148257 | 0.2040          |
| 0.1926        | 10.4014 | 151164 | 0.2023          |
| 0.1887        | 10.6015 | 154071 | 0.2010          |
| 0.1883        | 10.8015 | 156978 | 0.2004          |
| 0.1865        | 11.0015 | 159885 | 0.1963          |
| 0.1769        | 11.2015 | 162792 | 0.1954          |
| 0.1744        | 11.4016 | 165699 | 0.1928          |
| 0.1721        | 11.6016 | 168606 | 0.1914          |
| 0.1711        | 11.8016 | 171513 | 0.1895          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0