File size: 4,842 Bytes
7b8a6f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-v2-lemma_object_full_nodefs-deepseek-coder-1.3b-base-ddp-8lr-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lemexp-task1-v2-lemma_object_full_nodefs-deepseek-coder-1.3b-base-ddp-8lr-v2

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2426

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.5096        | 0.2   | 3094   | 0.5142          |
| 0.4699        | 0.4   | 6188   | 0.4815          |
| 0.4503        | 0.6   | 9282   | 0.4479          |
| 0.4359        | 0.8   | 12376  | 0.4406          |
| 0.4266        | 1.0   | 15470  | 0.4249          |
| 0.4181        | 1.2   | 18564  | 0.4146          |
| 0.4126        | 1.4   | 21658  | 0.4122          |
| 0.4076        | 1.6   | 24752  | 0.4043          |
| 0.4022        | 1.8   | 27846  | 0.4012          |
| 0.3969        | 2.0   | 30940  | 0.3975          |
| 0.3874        | 2.2   | 34034  | 0.3964          |
| 0.3865        | 2.4   | 37128  | 0.3813          |
| 0.379         | 2.6   | 40222  | 0.3783          |
| 0.3772        | 2.8   | 43316  | 0.3750          |
| 0.3735        | 3.0   | 46410  | 0.3765          |
| 0.3637        | 3.2   | 49504  | 0.3659          |
| 0.3669        | 3.4   | 52598  | 0.3610          |
| 0.3577        | 3.6   | 55692  | 0.3615          |
| 0.3578        | 3.8   | 58786  | 0.3567          |
| 0.3563        | 4.0   | 61880  | 0.3510          |
| 0.3442        | 4.2   | 64974  | 0.3461          |
| 0.3403        | 4.4   | 68068  | 0.3428          |
| 0.3385        | 4.6   | 71162  | 0.3442          |
| 0.3309        | 4.8   | 74256  | 0.3399          |
| 0.3271        | 5.0   | 77350  | 0.3290          |
| 0.3225        | 5.2   | 80444  | 0.3299          |
| 0.3241        | 5.4   | 83538  | 0.3253          |
| 0.321         | 5.6   | 86632  | 0.3258          |
| 0.3168        | 5.8   | 89726  | 0.3225          |
| 0.3117        | 6.0   | 92820  | 0.3182          |
| 0.2992        | 6.2   | 95914  | 0.3187          |
| 0.2985        | 6.4   | 99008  | 0.3104          |
| 0.2975        | 6.6   | 102102 | 0.3072          |
| 0.3021        | 6.8   | 105196 | 0.3018          |
| 0.2921        | 7.0   | 108290 | 0.3012          |
| 0.2807        | 7.2   | 111384 | 0.2967          |
| 0.2758        | 7.4   | 114478 | 0.2962          |
| 0.2807        | 7.6   | 117572 | 0.2932          |
| 0.2786        | 7.8   | 120666 | 0.2901          |
| 0.2778        | 8.0   | 123760 | 0.2846          |
| 0.2632        | 8.2   | 126854 | 0.2863          |
| 0.262         | 8.4   | 129948 | 0.2809          |
| 0.2611        | 8.6   | 133042 | 0.2828          |
| 0.2648        | 8.8   | 136136 | 0.2762          |
| 0.2632        | 9.0   | 139230 | 0.2730          |
| 0.2461        | 9.2   | 142324 | 0.2676          |
| 0.2443        | 9.4   | 145418 | 0.2669          |
| 0.2435        | 9.6   | 148512 | 0.2655          |
| 0.2431        | 9.8   | 151606 | 0.2631          |
| 0.2379        | 10.0  | 154700 | 0.2599          |
| 0.2275        | 10.2  | 157794 | 0.2583          |
| 0.2281        | 10.4  | 160888 | 0.2570          |
| 0.2243        | 10.6  | 163982 | 0.2530          |
| 0.2222        | 10.8  | 167076 | 0.2541          |
| 0.2219        | 11.0  | 170170 | 0.2494          |
| 0.2112        | 11.2  | 173264 | 0.2495          |
| 0.2077        | 11.4  | 176358 | 0.2471          |
| 0.2065        | 11.6  | 179452 | 0.2451          |
| 0.2029        | 11.8  | 182546 | 0.2432          |
| 0.2073        | 12.0  | 185640 | 0.2426          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0