--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- # Diffusion Text Demo Model A prototype **diffusion-based language model** implemented in PyTorch and trained on a subset of the [**TinyStories** dataset](https://huggingface.co/datasets/roneneldan/TinyStories). This model demonstrates iterative denoising for text generation, conditioned on an input prompt. --- ## Training Details * **Dataset:** 50,000 samples from [TinyStories](https://huggingface.co/datasets/roneneldan/TinyStories) * **Epochs:** 50 * **Batch size:** 16 * **Learning rate:** 1e-5 * **Diffusion steps (T):** 10 * **Tokenizer:** Naive whitespace (for demo purposes) --- ## 📉 Training Loss | Stage | Start Loss | End Loss | | ------------ | ---------- | -------- | | Epochs 1–10 | 8.38 | 6.13 | | Epochs 11–20 | 6.12 | 6.04 | | Epochs 21–50 | 6.04 | 5.92 | **Final Loss (Epoch 50): 5.92** ### Loss Curve --- ## Usage ### Install Requirements ```bash pip install torch huggingface_hub ``` ### Load the Model ```python import torch from modeling_diffusion import DiffusionTextModel # Load directly from Hub model = DiffusionTextModel.from_pretrained("yasserrmd/diffusion-text-demo") model.eval() device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) ``` --- ### Vocabulary Initialization ```python import json from huggingface_hub import hf_hub_download vocab_file = hf_hub_download("yasserrmd/diffusion-text-demo", "vocab.json") with open(vocab_file) as f: vocab = json.load(f) # Reverse mapping (IDs → tokens) id_to_word = {int(v): k for k, v in vocab.items()} # Special IDs pad_id, mask_id = vocab["[PAD]"], vocab["[MASK]"] ``` ### Inference with Prompt ```python def generate_with_prompt(model, input_text, max_length, T=10): model.eval() input_tokens = input_text.split() input_ids = [vocab.get(tok, mask_id) for tok in input_tokens] seq = torch.full((1, max_length), mask_id, dtype=torch.long, device=device) seq[0, :len(input_ids)] = torch.tensor(input_ids, device=device) for step in range(T, 0, -1): with torch.no_grad(): logits = model(seq, torch.tensor([step], device=device)) probs = torch.softmax(logits, dim=-1) for pos in range(len(input_ids), max_length): if seq[0, pos].item() == mask_id: seq[0, pos] = torch.multinomial(probs[0, pos], 1) ids = seq[0].tolist() if pad_id in ids: ids = ids[:ids.index(pad_id)] return " ".join(id_to_word[i] for i in ids) print(generate_with_prompt(model, "the cat", max_length=50)) ``` --- ## Use in a Hugging Face Space ```python import gradio as gr from modeling_diffusion import DiffusionTextModel model = DiffusionTextModel.from_pretrained("yasserrmd/diffusion-text-demo") model.eval() def infer(prompt): return generate_with_prompt(model, prompt, max_length=50) gr.Interface(fn=infer, inputs="text", outputs="text").launch() ``` --- ## References This model was inspired by several works on diffusion for text: * Li et al. (2022) – [**Diffusion-LM Improves Controllable Text Generation**](https://arxiv.org/abs/2205.14217) * Austin et al. (2021) – [**Structured Denoising Diffusion Models in Discrete State-Spaces (D3PM)**](https://arxiv.org/abs/2107.03006) * He et al. (2023) – [**DiffusionBERT: Improving Generative Masked Language Models with Diffusion**](https://arxiv.org/abs/2211.15029) * Gong et al. (2023) – [**DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models**](https://arxiv.org/abs/2211.11694) * Nie et al. (2025) – [**Large Language Diffusion Models (LLaDA)**](https://arxiv.org/abs/2501.04687) --- ⚠️ **Disclaimer:** This is a research prototype. Generations may not be coherent, since the model is trained with a simple tokenizer and on a limited dataset subset. For production-quality results, train longer with a subword tokenizer (e.g., GPT-2 BPE) and scale model size. ---