nielsr HF Staff commited on
Commit
4cf85f0
·
verified ·
1 Parent(s): 7197fcd

Improve model card: add pipeline tag, library name, code link, and usage example

Browse files

This PR significantly enhances the model card for `ycwu97/mamba2-distilled-small` by:
- Adding the `pipeline_tag: text-generation` to improve discoverability and classification.
- Specifying `library_name: transformers` as evidenced by the `config.json` and GitHub repository's setup, enabling automated "How to use" snippets on the Hub.
- Including a direct link to the GitHub repository.
- Integrating a comprehensive sample usage code snippet, derived from the project's official GitHub repository, demonstrating how to use this model as a draft model within the STree framework.

Please review these changes.

Files changed (1) hide show
  1. README.md +53 -4
README.md CHANGED
@@ -1,12 +1,61 @@
1
  ---
2
- license: apache-2.0
3
- language:
4
- - en
5
  base_model:
6
  - JunxiongWang/Llama3.2-Mamba2-3B-distill
 
 
 
 
 
7
  ---
 
8
  # Description
9
 
10
  2 layer mamba2 models distilled from JunxiongWang/Llama3.2-Mamba2-3B-distill. Early stop at 48000 step.
11
 
12
- Used in [STree](https://arxiv.org/abs/2505.14969) as a draft model for speculative decoding for hybrid models.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
  - JunxiongWang/Llama3.2-Mamba2-3B-distill
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ pipeline_tag: text-generation
8
+ library_name: transformers
9
  ---
10
+
11
  # Description
12
 
13
  2 layer mamba2 models distilled from JunxiongWang/Llama3.2-Mamba2-3B-distill. Early stop at 48000 step.
14
 
15
+ Used in [STree: Speculative Tree Decoding for Hybrid State-Space Models](https://arxiv.org/abs/2505.14969) as a draft model for speculative decoding for hybrid models.
16
+
17
+ For more details on installation, training, and evaluation, please refer to the [GitHub repository](https://github.com/wyc1997/stree).
18
+
19
+ ## Usage
20
+
21
+ You can use `EaModel.from_pretrained` for accelerated text generation, similar to `generate` from Hugging Face Transformers. Here is an example:
22
+
23
+ ```python
24
+ import torch
25
+ from eagle.model.ea_model import EaModel
26
+ from fastchat.model import get_conversation_template
27
+
28
+ # Load the base model and EAGLE acceleration model
29
+ base_model_path = "JunxiongWang/Llama3.2-Mamba2-3B-distill" # Replace with your base model path
30
+ EAGLE_model_path = "ycwu97/mamba2-distilled-small" # Replace with your EAGLE weights path
31
+
32
+ model = EaModel.from_pretrained(
33
+ base_model_path=base_model_path,
34
+ ea_model_path=EAGLE_model_path,
35
+ torch_dtype=torch.float16,
36
+ low_cpu_mem_usage=True,
37
+ device_map="auto",
38
+ total_token=-1 # -1 for auto configuration of draft tokens
39
+ )
40
+ model.eval()
41
+
42
+ # Prepare your message using a conversation template (e.g., Vicuna)
43
+ your_message="Hello"
44
+ conv = get_conversation_template("vicuna") # Use the correct chat template for your base model
45
+ conv.append_message(conv.roles[0], your_message)
46
+ conv.append_message(conv.roles[1], None)
47
+ prompt = conv.get_prompt()
48
+
49
+ # Tokenize the input prompt
50
+ input_ids = model.tokenizer([prompt]).input_ids
51
+ input_ids = torch.as_tensor(input_ids).cuda()
52
+
53
+ # Generate output using EAGLE's accelerated decoding
54
+ output_ids = model.eagenerate(input_ids, temperature=0.5, max_new_tokens=512)
55
+
56
+ # Decode and print the generated text
57
+ output = model.tokenizer.decode(output_ids[0])
58
+ print(output)
59
+ ```
60
+
61
+ **Note:** For chat models like Vicuna, LLaMA2-Chat, and LLaMA3-Instruct, you must use the correct chat template to ensure proper model output and EAGLE's performance.