File size: 1,495 Bytes
7d5a2dc 791e230 7dbd94f 7d5a2dc 791e230 7d5a2dc 791e230 7d5a2dc 7dbd94f 7d5a2dc 791e230 7d5a2dc 791e230 7d5a2dc 791e230 7d5a2dc 791e230 7dbd94f 791e230 7d5a2dc 791e230 7d5a2dc 791e230 7d5a2dc 791e230 7d5a2dc 791e230 0f20c1f 791e230 7d5a2dc 791e230 7d5a2dc 791e230 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
base_model: microsoft/Phi-3.5-mini-instruct
library_name: transformers
model_name: phi3_5_adapter_model
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for phi3_5_adapter_model
This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="yongtaek/phi3_5_adapter_model", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.12.0
- Transformers: 4.46.2
- Pytorch: 2.5.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |