File size: 1,495 Bytes
7d5a2dc
791e230
 
7dbd94f
7d5a2dc
791e230
7d5a2dc
 
791e230
7d5a2dc
 
7dbd94f
7d5a2dc
791e230
 
7d5a2dc
791e230
7d5a2dc
791e230
 
7d5a2dc
791e230
7dbd94f
791e230
 
 
7d5a2dc
791e230
7d5a2dc
 
 
791e230
7d5a2dc
791e230
7d5a2dc
791e230
 
0f20c1f
791e230
 
7d5a2dc
791e230
7d5a2dc
 
 
791e230
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
base_model: microsoft/Phi-3.5-mini-instruct
library_name: transformers
model_name: phi3_5_adapter_model
tags:
- generated_from_trainer
- trl
- sft
licence: license
---

# Model Card for phi3_5_adapter_model

This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="yongtaek/phi3_5_adapter_model", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure



This model was trained with SFT.

### Framework versions

- TRL: 0.12.0
- Transformers: 4.46.2
- Pytorch: 2.5.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```