youssefkhalil320 commited on
Commit
8436f20
·
verified ·
1 Parent(s): 5d2c2b7

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +187 -180
  2. model.safetensors +1 -1
README.md CHANGED
@@ -10,34 +10,34 @@ tags:
10
  - sentence-similarity
11
  - feature-extraction
12
  - generated_from_trainer
13
- - dataset_size:1001016
14
  - loss:CoSENTLoss
15
  widget:
16
- - source_sentence: fish food
17
  sentences:
18
- - fertilizer
19
- - interior accessory
20
- - backpack
21
- - source_sentence: toy car
22
  sentences:
23
- - scuba diving
24
- - baking mold
25
- - dog supplement
26
- - source_sentence: kettle
27
  sentences:
28
- - fedora
29
- - slipper
30
- - cologne
31
- - source_sentence: face primer
32
  sentences:
33
- - hair dye
34
- - yoga
35
- - house supply
36
- - source_sentence: brownie
37
  sentences:
38
- - wine glass
39
- - fruit
40
- - headwear
41
  ---
42
 
43
  # all-MiniLM-L6-v17-pair_score
@@ -90,9 +90,9 @@ from sentence_transformers import SentenceTransformer
90
  model = SentenceTransformer("sentence_transformers_model_id")
91
  # Run inference
92
  sentences = [
93
- 'brownie',
94
- 'headwear',
95
- 'fruit',
96
  ]
97
  embeddings = model.encode(sentences)
98
  print(embeddings.shape)
@@ -276,162 +276,169 @@ You can finetune this model on your own dataset.
276
 
277
  | Epoch | Step | Training Loss |
278
  |:------:|:-----:|:-------------:|
279
- | 0.0128 | 100 | 10.5228 |
280
- | 0.0256 | 200 | 10.1043 |
281
- | 0.0384 | 300 | 9.3454 |
282
- | 0.0511 | 400 | 8.8151 |
283
- | 0.0639 | 500 | 8.3042 |
284
- | 0.0767 | 600 | 7.9213 |
285
- | 0.0895 | 700 | 7.5794 |
286
- | 0.1023 | 800 | 7.3291 |
287
- | 0.1151 | 900 | 7.0739 |
288
- | 0.1279 | 1000 | 6.9237 |
289
- | 0.1406 | 1100 | 6.5677 |
290
- | 0.1534 | 1200 | 6.2493 |
291
- | 0.1662 | 1300 | 6.065 |
292
- | 0.1790 | 1400 | 5.6712 |
293
- | 0.1918 | 1500 | 5.428 |
294
- | 0.2046 | 1600 | 5.2299 |
295
- | 0.2174 | 1700 | 4.9227 |
296
- | 0.2301 | 1800 | 4.7739 |
297
- | 0.2429 | 1900 | 4.7518 |
298
- | 0.2557 | 2000 | 4.4015 |
299
- | 0.2685 | 2100 | 4.4666 |
300
- | 0.2813 | 2200 | 4.314 |
301
- | 0.2941 | 2300 | 4.5083 |
302
- | 0.3069 | 2400 | 4.3116 |
303
- | 0.3197 | 2500 | 4.1896 |
304
- | 0.3324 | 2600 | 4.2175 |
305
- | 0.3452 | 2700 | 3.7468 |
306
- | 0.3580 | 2800 | 3.8349 |
307
- | 0.3708 | 2900 | 3.7179 |
308
- | 0.3836 | 3000 | 3.6107 |
309
- | 0.3964 | 3100 | 3.3097 |
310
- | 0.4092 | 3200 | 3.2212 |
311
- | 0.4219 | 3300 | 3.5568 |
312
- | 0.4347 | 3400 | 3.2954 |
313
- | 0.4475 | 3500 | 3.6753 |
314
- | 0.4603 | 3600 | 3.2517 |
315
- | 0.4731 | 3700 | 3.2567 |
316
- | 0.4859 | 3800 | 3.2776 |
317
- | 0.4987 | 3900 | 3.0607 |
318
- | 0.5114 | 4000 | 3.5119 |
319
- | 0.5242 | 4100 | 2.8557 |
320
- | 0.5370 | 4200 | 2.9906 |
321
- | 0.5498 | 4300 | 2.8719 |
322
- | 0.5626 | 4400 | 2.6137 |
323
- | 0.5754 | 4500 | 2.3956 |
324
- | 0.5882 | 4600 | 2.919 |
325
- | 0.6009 | 4700 | 2.3483 |
326
- | 0.6137 | 4800 | 2.7001 |
327
- | 0.6265 | 4900 | 2.7407 |
328
- | 0.6393 | 5000 | 2.5876 |
329
- | 0.6521 | 5100 | 2.5301 |
330
- | 0.6649 | 5200 | 2.2644 |
331
- | 0.6777 | 5300 | 2.249 |
332
- | 0.6904 | 5400 | 2.3394 |
333
- | 0.7032 | 5500 | 2.5532 |
334
- | 0.7160 | 5600 | 2.1932 |
335
- | 0.7288 | 5700 | 2.1366 |
336
- | 0.7416 | 5800 | 1.6265 |
337
- | 0.7544 | 5900 | 1.9698 |
338
- | 0.7672 | 6000 | 1.9952 |
339
- | 0.7800 | 6100 | 2.0701 |
340
- | 0.7927 | 6200 | 2.051 |
341
- | 0.8055 | 6300 | 1.5854 |
342
- | 0.8183 | 6400 | 1.8948 |
343
- | 0.8311 | 6500 | 1.4618 |
344
- | 0.8439 | 6600 | 1.8487 |
345
- | 0.8567 | 6700 | 1.6936 |
346
- | 0.8695 | 6800 | 1.6337 |
347
- | 0.8822 | 6900 | 1.5122 |
348
- | 0.8950 | 7000 | 1.7474 |
349
- | 0.9078 | 7100 | 1.6854 |
350
- | 0.9206 | 7200 | 1.4052 |
351
- | 0.9334 | 7300 | 1.5428 |
352
- | 0.9462 | 7400 | 1.5787 |
353
- | 0.9590 | 7500 | 1.8069 |
354
- | 0.9717 | 7600 | 1.204 |
355
- | 0.9845 | 7700 | 1.4479 |
356
- | 0.9973 | 7800 | 1.3538 |
357
- | 1.0101 | 7900 | 1.4539 |
358
- | 1.0229 | 8000 | 1.22 |
359
- | 1.0357 | 8100 | 1.0764 |
360
- | 1.0485 | 8200 | 1.2819 |
361
- | 1.0612 | 8300 | 1.3797 |
362
- | 1.0740 | 8400 | 1.3373 |
363
- | 1.0868 | 8500 | 1.0146 |
364
- | 1.0996 | 8600 | 1.2652 |
365
- | 1.1124 | 8700 | 1.1586 |
366
- | 1.1252 | 8800 | 1.1659 |
367
- | 1.1380 | 8900 | 1.0348 |
368
- | 1.1507 | 9000 | 1.3716 |
369
- | 1.1635 | 9100 | 0.9573 |
370
- | 1.1763 | 9200 | 1.28 |
371
- | 1.1891 | 9300 | 1.4242 |
372
- | 1.2019 | 9400 | 1.0758 |
373
- | 1.2147 | 9500 | 1.1883 |
374
- | 1.2275 | 9600 | 1.4048 |
375
- | 1.2403 | 9700 | 0.978 |
376
- | 1.2530 | 9800 | 1.3202 |
377
- | 1.2658 | 9900 | 0.8231 |
378
- | 1.2786 | 10000 | 1.268 |
379
- | 1.2914 | 10100 | 1.07 |
380
- | 1.3042 | 10200 | 1.2326 |
381
- | 1.3170 | 10300 | 1.1539 |
382
- | 1.3298 | 10400 | 1.3923 |
383
- | 1.3425 | 10500 | 1.1402 |
384
- | 1.3553 | 10600 | 0.8491 |
385
- | 1.3681 | 10700 | 1.19 |
386
- | 1.3809 | 10800 | 1.1912 |
387
- | 1.3937 | 10900 | 1.0714 |
388
- | 1.4065 | 11000 | 0.9133 |
389
- | 1.4193 | 11100 | 1.2477 |
390
- | 1.4320 | 11200 | 0.9897 |
391
- | 1.4448 | 11300 | 1.2983 |
392
- | 1.4576 | 11400 | 0.9199 |
393
- | 1.4704 | 11500 | 1.0131 |
394
- | 1.4832 | 11600 | 0.9018 |
395
- | 1.4960 | 11700 | 1.0019 |
396
- | 1.5088 | 11800 | 0.8019 |
397
- | 1.5215 | 11900 | 0.7386 |
398
- | 1.5343 | 12000 | 0.9186 |
399
- | 1.5471 | 12100 | 0.9874 |
400
- | 1.5599 | 12200 | 0.8757 |
401
- | 1.5727 | 12300 | 0.9056 |
402
- | 1.5855 | 12400 | 0.7071 |
403
- | 1.5983 | 12500 | 0.9351 |
404
- | 1.6110 | 12600 | 1.1667 |
405
- | 1.6238 | 12700 | 0.7709 |
406
- | 1.6366 | 12800 | 1.0188 |
407
- | 1.6494 | 12900 | 1.0394 |
408
- | 1.6622 | 13000 | 0.7236 |
409
- | 1.6750 | 13100 | 0.8792 |
410
- | 1.6878 | 13200 | 0.9451 |
411
- | 1.7005 | 13300 | 0.6841 |
412
- | 1.7133 | 13400 | 0.9841 |
413
- | 1.7261 | 13500 | 0.945 |
414
- | 1.7389 | 13600 | 0.6997 |
415
- | 1.7517 | 13700 | 1.1759 |
416
- | 1.7645 | 13800 | 0.9966 |
417
- | 1.7773 | 13900 | 1.0204 |
418
- | 1.7901 | 14000 | 0.7887 |
419
- | 1.8028 | 14100 | 1.1348 |
420
- | 1.8156 | 14200 | 0.9245 |
421
- | 1.8284 | 14300 | 0.6094 |
422
- | 1.8412 | 14400 | 0.9621 |
423
- | 1.8540 | 14500 | 1.0647 |
424
- | 1.8668 | 14600 | 1.1202 |
425
- | 1.8796 | 14700 | 0.6878 |
426
- | 1.8923 | 14800 | 0.7876 |
427
- | 1.9051 | 14900 | 0.7892 |
428
- | 1.9179 | 15000 | 0.6509 |
429
- | 1.9307 | 15100 | 0.9214 |
430
- | 1.9435 | 15200 | 1.0267 |
431
- | 1.9563 | 15300 | 0.9325 |
432
- | 1.9691 | 15400 | 0.8068 |
433
- | 1.9818 | 15500 | 0.8764 |
434
- | 1.9946 | 15600 | 0.9375 |
 
 
 
 
 
 
 
435
 
436
  </details>
437
 
 
10
  - sentence-similarity
11
  - feature-extraction
12
  - generated_from_trainer
13
+ - dataset_size:1048433
14
  - loss:CoSENTLoss
15
  widget:
16
+ - source_sentence: specialty supplement
17
  sentences:
18
+ - serving spoon
19
+ - water filter
20
+ - furniture accessory
21
+ - source_sentence: pediatrics medicine
22
  sentences:
23
+ - flour
24
+ - playstation accessory
25
+ - pantry
26
+ - source_sentence: hook
27
  sentences:
28
+ - serving dish
29
+ - serving fork
30
+ - floor game
31
+ - source_sentence: pasta
32
  sentences:
33
+ - neckwear and scarf
34
+ - frying basket
35
+ - chocolate
36
+ - source_sentence: electronic instrument
37
  sentences:
38
+ - Salad
39
+ - sirlion
40
+ - gardening accessory
41
  ---
42
 
43
  # all-MiniLM-L6-v17-pair_score
 
90
  model = SentenceTransformer("sentence_transformers_model_id")
91
  # Run inference
92
  sentences = [
93
+ 'electronic instrument',
94
+ 'sirlion',
95
+ 'Salad',
96
  ]
97
  embeddings = model.encode(sentences)
98
  print(embeddings.shape)
 
276
 
277
  | Epoch | Step | Training Loss |
278
  |:------:|:-----:|:-------------:|
279
+ | 0.0122 | 100 | 10.562 |
280
+ | 0.0244 | 200 | 10.0184 |
281
+ | 0.0366 | 300 | 9.398 |
282
+ | 0.0488 | 400 | 8.8197 |
283
+ | 0.0610 | 500 | 8.3899 |
284
+ | 0.0733 | 600 | 7.8989 |
285
+ | 0.0855 | 700 | 7.6515 |
286
+ | 0.0977 | 800 | 7.3998 |
287
+ | 0.1099 | 900 | 7.166 |
288
+ | 0.1221 | 1000 | 6.9383 |
289
+ | 0.1343 | 1100 | 6.6043 |
290
+ | 0.1465 | 1200 | 6.3584 |
291
+ | 0.1587 | 1300 | 6.0252 |
292
+ | 0.1709 | 1400 | 5.7639 |
293
+ | 0.1831 | 1500 | 5.6496 |
294
+ | 0.1953 | 1600 | 5.2169 |
295
+ | 0.2075 | 1700 | 5.1389 |
296
+ | 0.2198 | 1800 | 4.9316 |
297
+ | 0.2320 | 1900 | 4.8547 |
298
+ | 0.2442 | 2000 | 4.6022 |
299
+ | 0.2564 | 2100 | 4.7122 |
300
+ | 0.2686 | 2200 | 4.5965 |
301
+ | 0.2808 | 2300 | 3.9285 |
302
+ | 0.2930 | 2400 | 4.0168 |
303
+ | 0.3052 | 2500 | 4.2677 |
304
+ | 0.3174 | 2600 | 4.147 |
305
+ | 0.3296 | 2700 | 4.101 |
306
+ | 0.3418 | 2800 | 3.8629 |
307
+ | 0.3540 | 2900 | 3.86 |
308
+ | 0.3663 | 3000 | 3.5607 |
309
+ | 0.3785 | 3100 | 3.8495 |
310
+ | 0.3907 | 3200 | 3.5558 |
311
+ | 0.4029 | 3300 | 3.7251 |
312
+ | 0.4151 | 3400 | 3.5233 |
313
+ | 0.4273 | 3500 | 3.8677 |
314
+ | 0.4395 | 3600 | 3.3688 |
315
+ | 0.4517 | 3700 | 3.479 |
316
+ | 0.4639 | 3800 | 3.1691 |
317
+ | 0.4761 | 3900 | 3.1791 |
318
+ | 0.4883 | 4000 | 3.2925 |
319
+ | 0.5005 | 4100 | 2.6573 |
320
+ | 0.5128 | 4200 | 2.8804 |
321
+ | 0.5250 | 4300 | 3.0418 |
322
+ | 0.5372 | 4400 | 2.7162 |
323
+ | 0.5494 | 4500 | 2.8449 |
324
+ | 0.5616 | 4600 | 2.7159 |
325
+ | 0.5738 | 4700 | 2.5733 |
326
+ | 0.5860 | 4800 | 2.5866 |
327
+ | 0.5982 | 4900 | 2.9195 |
328
+ | 0.6104 | 5000 | 2.0384 |
329
+ | 0.6226 | 5100 | 2.6745 |
330
+ | 0.6348 | 5200 | 2.3901 |
331
+ | 0.6471 | 5300 | 2.2872 |
332
+ | 0.6593 | 5400 | 2.0086 |
333
+ | 0.6715 | 5500 | 2.198 |
334
+ | 0.6837 | 5600 | 1.9139 |
335
+ | 0.6959 | 5700 | 2.0432 |
336
+ | 0.7081 | 5800 | 2.1445 |
337
+ | 0.7203 | 5900 | 2.5626 |
338
+ | 0.7325 | 6000 | 2.1707 |
339
+ | 0.7447 | 6100 | 2.1568 |
340
+ | 0.7569 | 6200 | 2.0102 |
341
+ | 0.7691 | 6300 | 2.0012 |
342
+ | 0.7813 | 6400 | 1.8381 |
343
+ | 0.7936 | 6500 | 1.7552 |
344
+ | 0.8058 | 6600 | 1.9704 |
345
+ | 0.8180 | 6700 | 1.6397 |
346
+ | 0.8302 | 6800 | 1.8857 |
347
+ | 0.8424 | 6900 | 1.8036 |
348
+ | 0.8546 | 7000 | 1.721 |
349
+ | 0.8668 | 7100 | 1.6888 |
350
+ | 0.8790 | 7200 | 1.7908 |
351
+ | 0.8912 | 7300 | 1.5851 |
352
+ | 0.9034 | 7400 | 1.7986 |
353
+ | 0.9156 | 7500 | 1.2549 |
354
+ | 0.9278 | 7600 | 1.5765 |
355
+ | 0.9401 | 7700 | 1.4524 |
356
+ | 0.9523 | 7800 | 1.2767 |
357
+ | 0.9645 | 7900 | 1.1604 |
358
+ | 0.9767 | 8000 | 1.557 |
359
+ | 0.9889 | 8100 | 1.1124 |
360
+ | 1.0011 | 8200 | 1.3092 |
361
+ | 1.0133 | 8300 | 1.598 |
362
+ | 1.0255 | 8400 | 1.6242 |
363
+ | 1.0377 | 8500 | 1.4893 |
364
+ | 1.0499 | 8600 | 1.0693 |
365
+ | 1.0621 | 8700 | 0.9369 |
366
+ | 1.0743 | 8800 | 1.1275 |
367
+ | 1.0866 | 8900 | 1.3307 |
368
+ | 1.0988 | 9000 | 1.0498 |
369
+ | 1.1110 | 9100 | 1.2496 |
370
+ | 1.1232 | 9200 | 1.1011 |
371
+ | 1.1354 | 9300 | 1.0483 |
372
+ | 1.1476 | 9400 | 1.2593 |
373
+ | 1.1598 | 9500 | 0.9409 |
374
+ | 1.1720 | 9600 | 1.0609 |
375
+ | 1.1842 | 9700 | 1.1829 |
376
+ | 1.1964 | 9800 | 1.0511 |
377
+ | 1.2086 | 9900 | 0.919 |
378
+ | 1.2209 | 10000 | 0.9473 |
379
+ | 1.2331 | 10100 | 1.2604 |
380
+ | 1.2453 | 10200 | 1.17 |
381
+ | 1.2575 | 10300 | 1.181 |
382
+ | 1.2697 | 10400 | 0.9092 |
383
+ | 1.2819 | 10500 | 0.9655 |
384
+ | 1.2941 | 10600 | 1.058 |
385
+ | 1.3063 | 10700 | 1.283 |
386
+ | 1.3185 | 10800 | 1.1552 |
387
+ | 1.3307 | 10900 | 0.858 |
388
+ | 1.3429 | 11000 | 0.8581 |
389
+ | 1.3551 | 11100 | 1.1272 |
390
+ | 1.3674 | 11200 | 1.0127 |
391
+ | 1.3796 | 11300 | 0.7372 |
392
+ | 1.3918 | 11400 | 0.913 |
393
+ | 1.4040 | 11500 | 0.8728 |
394
+ | 1.4162 | 11600 | 1.1358 |
395
+ | 1.4284 | 11700 | 0.9387 |
396
+ | 1.4406 | 11800 | 0.8424 |
397
+ | 1.4528 | 11900 | 0.8999 |
398
+ | 1.4650 | 12000 | 1.2505 |
399
+ | 1.4772 | 12100 | 1.0151 |
400
+ | 1.4894 | 12200 | 0.8013 |
401
+ | 1.5016 | 12300 | 1.1422 |
402
+ | 1.5139 | 12400 | 1.1518 |
403
+ | 1.5261 | 12500 | 1.0553 |
404
+ | 1.5383 | 12600 | 0.9228 |
405
+ | 1.5505 | 12700 | 1.2036 |
406
+ | 1.5627 | 12800 | 1.1064 |
407
+ | 1.5749 | 12900 | 0.7599 |
408
+ | 1.5871 | 13000 | 0.6376 |
409
+ | 1.5993 | 13100 | 1.002 |
410
+ | 1.6115 | 13200 | 0.9072 |
411
+ | 1.6237 | 13300 | 0.9645 |
412
+ | 1.6359 | 13400 | 0.9208 |
413
+ | 1.6482 | 13500 | 1.1439 |
414
+ | 1.6604 | 13600 | 1.3721 |
415
+ | 1.6726 | 13700 | 0.8702 |
416
+ | 1.6848 | 13800 | 0.9476 |
417
+ | 1.6970 | 13900 | 1.1247 |
418
+ | 1.7092 | 14000 | 1.1059 |
419
+ | 1.7214 | 14100 | 0.9272 |
420
+ | 1.7336 | 14200 | 0.8893 |
421
+ | 1.7458 | 14300 | 0.6242 |
422
+ | 1.7580 | 14400 | 0.6779 |
423
+ | 1.7702 | 14500 | 0.7436 |
424
+ | 1.7824 | 14600 | 0.7655 |
425
+ | 1.7947 | 14700 | 0.7952 |
426
+ | 1.8069 | 14800 | 1.1916 |
427
+ | 1.8191 | 14900 | 0.7219 |
428
+ | 1.8313 | 15000 | 0.7313 |
429
+ | 1.8435 | 15100 | 0.8224 |
430
+ | 1.8557 | 15200 | 0.8756 |
431
+ | 1.8679 | 15300 | 0.622 |
432
+ | 1.8801 | 15400 | 1.0309 |
433
+ | 1.8923 | 15500 | 0.7322 |
434
+ | 1.9045 | 15600 | 0.9327 |
435
+ | 1.9167 | 15700 | 0.8632 |
436
+ | 1.9289 | 15800 | 1.0087 |
437
+ | 1.9412 | 15900 | 0.6738 |
438
+ | 1.9534 | 16000 | 0.8936 |
439
+ | 1.9656 | 16100 | 0.8083 |
440
+ | 1.9778 | 16200 | 0.7114 |
441
+ | 1.9900 | 16300 | 0.9119 |
442
 
443
  </details>
444
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:be8495a1eedee37de4b77e2ef82ba7f67633b6c7383cbc09536ec02a5d48795a
3
  size 90864192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cc57067408aca39603291da523b6810be392d1c1503a2ae1b0008cc4fc3e544
3
  size 90864192