---
base_model: sentence-transformers/all-MiniLM-L6-v2
language:
- en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1048433
- loss:CoSENTLoss
widget:
- source_sentence: specialty supplement
sentences:
- serving spoon
- water filter
- furniture accessory
- source_sentence: pediatrics medicine
sentences:
- flour
- playstation accessory
- pantry
- source_sentence: hook
sentences:
- serving dish
- serving fork
- floor game
- source_sentence: pasta
sentences:
- neckwear and scarf
- frying basket
- chocolate
- source_sentence: electronic instrument
sentences:
- Salad
- sirlion
- gardening accessory
---
# all-MiniLM-L6-v17-pair_score
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'electronic instrument',
'sirlion',
'Salad',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0122 | 100 | 10.562 |
| 0.0244 | 200 | 10.0184 |
| 0.0366 | 300 | 9.398 |
| 0.0488 | 400 | 8.8197 |
| 0.0610 | 500 | 8.3899 |
| 0.0733 | 600 | 7.8989 |
| 0.0855 | 700 | 7.6515 |
| 0.0977 | 800 | 7.3998 |
| 0.1099 | 900 | 7.166 |
| 0.1221 | 1000 | 6.9383 |
| 0.1343 | 1100 | 6.6043 |
| 0.1465 | 1200 | 6.3584 |
| 0.1587 | 1300 | 6.0252 |
| 0.1709 | 1400 | 5.7639 |
| 0.1831 | 1500 | 5.6496 |
| 0.1953 | 1600 | 5.2169 |
| 0.2075 | 1700 | 5.1389 |
| 0.2198 | 1800 | 4.9316 |
| 0.2320 | 1900 | 4.8547 |
| 0.2442 | 2000 | 4.6022 |
| 0.2564 | 2100 | 4.7122 |
| 0.2686 | 2200 | 4.5965 |
| 0.2808 | 2300 | 3.9285 |
| 0.2930 | 2400 | 4.0168 |
| 0.3052 | 2500 | 4.2677 |
| 0.3174 | 2600 | 4.147 |
| 0.3296 | 2700 | 4.101 |
| 0.3418 | 2800 | 3.8629 |
| 0.3540 | 2900 | 3.86 |
| 0.3663 | 3000 | 3.5607 |
| 0.3785 | 3100 | 3.8495 |
| 0.3907 | 3200 | 3.5558 |
| 0.4029 | 3300 | 3.7251 |
| 0.4151 | 3400 | 3.5233 |
| 0.4273 | 3500 | 3.8677 |
| 0.4395 | 3600 | 3.3688 |
| 0.4517 | 3700 | 3.479 |
| 0.4639 | 3800 | 3.1691 |
| 0.4761 | 3900 | 3.1791 |
| 0.4883 | 4000 | 3.2925 |
| 0.5005 | 4100 | 2.6573 |
| 0.5128 | 4200 | 2.8804 |
| 0.5250 | 4300 | 3.0418 |
| 0.5372 | 4400 | 2.7162 |
| 0.5494 | 4500 | 2.8449 |
| 0.5616 | 4600 | 2.7159 |
| 0.5738 | 4700 | 2.5733 |
| 0.5860 | 4800 | 2.5866 |
| 0.5982 | 4900 | 2.9195 |
| 0.6104 | 5000 | 2.0384 |
| 0.6226 | 5100 | 2.6745 |
| 0.6348 | 5200 | 2.3901 |
| 0.6471 | 5300 | 2.2872 |
| 0.6593 | 5400 | 2.0086 |
| 0.6715 | 5500 | 2.198 |
| 0.6837 | 5600 | 1.9139 |
| 0.6959 | 5700 | 2.0432 |
| 0.7081 | 5800 | 2.1445 |
| 0.7203 | 5900 | 2.5626 |
| 0.7325 | 6000 | 2.1707 |
| 0.7447 | 6100 | 2.1568 |
| 0.7569 | 6200 | 2.0102 |
| 0.7691 | 6300 | 2.0012 |
| 0.7813 | 6400 | 1.8381 |
| 0.7936 | 6500 | 1.7552 |
| 0.8058 | 6600 | 1.9704 |
| 0.8180 | 6700 | 1.6397 |
| 0.8302 | 6800 | 1.8857 |
| 0.8424 | 6900 | 1.8036 |
| 0.8546 | 7000 | 1.721 |
| 0.8668 | 7100 | 1.6888 |
| 0.8790 | 7200 | 1.7908 |
| 0.8912 | 7300 | 1.5851 |
| 0.9034 | 7400 | 1.7986 |
| 0.9156 | 7500 | 1.2549 |
| 0.9278 | 7600 | 1.5765 |
| 0.9401 | 7700 | 1.4524 |
| 0.9523 | 7800 | 1.2767 |
| 0.9645 | 7900 | 1.1604 |
| 0.9767 | 8000 | 1.557 |
| 0.9889 | 8100 | 1.1124 |
| 1.0011 | 8200 | 1.3092 |
| 1.0133 | 8300 | 1.598 |
| 1.0255 | 8400 | 1.6242 |
| 1.0377 | 8500 | 1.4893 |
| 1.0499 | 8600 | 1.0693 |
| 1.0621 | 8700 | 0.9369 |
| 1.0743 | 8800 | 1.1275 |
| 1.0866 | 8900 | 1.3307 |
| 1.0988 | 9000 | 1.0498 |
| 1.1110 | 9100 | 1.2496 |
| 1.1232 | 9200 | 1.1011 |
| 1.1354 | 9300 | 1.0483 |
| 1.1476 | 9400 | 1.2593 |
| 1.1598 | 9500 | 0.9409 |
| 1.1720 | 9600 | 1.0609 |
| 1.1842 | 9700 | 1.1829 |
| 1.1964 | 9800 | 1.0511 |
| 1.2086 | 9900 | 0.919 |
| 1.2209 | 10000 | 0.9473 |
| 1.2331 | 10100 | 1.2604 |
| 1.2453 | 10200 | 1.17 |
| 1.2575 | 10300 | 1.181 |
| 1.2697 | 10400 | 0.9092 |
| 1.2819 | 10500 | 0.9655 |
| 1.2941 | 10600 | 1.058 |
| 1.3063 | 10700 | 1.283 |
| 1.3185 | 10800 | 1.1552 |
| 1.3307 | 10900 | 0.858 |
| 1.3429 | 11000 | 0.8581 |
| 1.3551 | 11100 | 1.1272 |
| 1.3674 | 11200 | 1.0127 |
| 1.3796 | 11300 | 0.7372 |
| 1.3918 | 11400 | 0.913 |
| 1.4040 | 11500 | 0.8728 |
| 1.4162 | 11600 | 1.1358 |
| 1.4284 | 11700 | 0.9387 |
| 1.4406 | 11800 | 0.8424 |
| 1.4528 | 11900 | 0.8999 |
| 1.4650 | 12000 | 1.2505 |
| 1.4772 | 12100 | 1.0151 |
| 1.4894 | 12200 | 0.8013 |
| 1.5016 | 12300 | 1.1422 |
| 1.5139 | 12400 | 1.1518 |
| 1.5261 | 12500 | 1.0553 |
| 1.5383 | 12600 | 0.9228 |
| 1.5505 | 12700 | 1.2036 |
| 1.5627 | 12800 | 1.1064 |
| 1.5749 | 12900 | 0.7599 |
| 1.5871 | 13000 | 0.6376 |
| 1.5993 | 13100 | 1.002 |
| 1.6115 | 13200 | 0.9072 |
| 1.6237 | 13300 | 0.9645 |
| 1.6359 | 13400 | 0.9208 |
| 1.6482 | 13500 | 1.1439 |
| 1.6604 | 13600 | 1.3721 |
| 1.6726 | 13700 | 0.8702 |
| 1.6848 | 13800 | 0.9476 |
| 1.6970 | 13900 | 1.1247 |
| 1.7092 | 14000 | 1.1059 |
| 1.7214 | 14100 | 0.9272 |
| 1.7336 | 14200 | 0.8893 |
| 1.7458 | 14300 | 0.6242 |
| 1.7580 | 14400 | 0.6779 |
| 1.7702 | 14500 | 0.7436 |
| 1.7824 | 14600 | 0.7655 |
| 1.7947 | 14700 | 0.7952 |
| 1.8069 | 14800 | 1.1916 |
| 1.8191 | 14900 | 0.7219 |
| 1.8313 | 15000 | 0.7313 |
| 1.8435 | 15100 | 0.8224 |
| 1.8557 | 15200 | 0.8756 |
| 1.8679 | 15300 | 0.622 |
| 1.8801 | 15400 | 1.0309 |
| 1.8923 | 15500 | 0.7322 |
| 1.9045 | 15600 | 0.9327 |
| 1.9167 | 15700 | 0.8632 |
| 1.9289 | 15800 | 1.0087 |
| 1.9412 | 15900 | 0.6738 |
| 1.9534 | 16000 | 0.8936 |
| 1.9656 | 16100 | 0.8083 |
| 1.9778 | 16200 | 0.7114 |
| 1.9900 | 16300 | 0.9119 |
### Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```