---
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets:
- youssefkhalil320/pairs_three_scores_v5
language:
- en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:80000003
- loss:CoSENTLoss
widget:
- source_sentence: durable pvc swim ring
sentences:
- flaky croissant
- urban shoes
- warm drinks mug
- source_sentence: iso mak retard capsules
sentences:
- savory baguette
- shea butter body cream
- softwheeled cruiser
- source_sentence: love sandra potty
sentences:
- utensil holder
- olive pants
- headwear
- source_sentence: dusky hair brush
sentences:
- back compartment laptop
- rubber feet platter
- honed blade knife
- source_sentence: nkd skn
sentences:
- fruit fragrances nail polish remover
- panini salmon
- hand drawing bag
---
# all-MiniLM-L6-v8-pair_score
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'nkd skn',
'hand drawing bag',
'panini salmon',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### pairs_three_scores_v5
* Dataset: [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) at [3d8c457](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5/tree/3d8c45703846bd2adfaaf422abafbc389b283de1)
* Size: 80,000,003 training samples
* Columns: sentence1, sentence2, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
vanilla hair cream | free of paraben hair mask | 0.5 |
| nourishing shampoo | cumin lemon tea | 0.0 |
| safe materials pacifier | facial serum | 0.5 |
* Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### pairs_three_scores_v5
* Dataset: [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) at [3d8c457](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5/tree/3d8c45703846bd2adfaaf422abafbc389b283de1)
* Size: 20,000,001 evaluation samples
* Columns: sentence1, sentence2, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | teddy bear toy | long lasting cat food | 0.0 |
| eva hair treatment | fresh pineapple | 0.0 |
| soft wave hair conditioner | hybrid seat bike | 0.0 |
* Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters