--- base_model: sentence-transformers/all-MiniLM-L6-v2 datasets: - youssefkhalil320/pairs_three_scores_v5 language: - en library_name: sentence-transformers license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:80000003 - loss:CoSENTLoss widget: - source_sentence: durable pvc swim ring sentences: - flaky croissant - urban shoes - warm drinks mug - source_sentence: iso mak retard capsules sentences: - savory baguette - shea butter body cream - softwheeled cruiser - source_sentence: love sandra potty sentences: - utensil holder - olive pants - headwear - source_sentence: dusky hair brush sentences: - back compartment laptop - rubber feet platter - honed blade knife - source_sentence: nkd skn sentences: - fruit fragrances nail polish remover - panini salmon - hand drawing bag --- # all-MiniLM-L6-v8-pair_score This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'nkd skn', 'hand drawing bag', 'panini salmon', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### pairs_three_scores_v5 * Dataset: [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) at [3d8c457](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5/tree/3d8c45703846bd2adfaaf422abafbc389b283de1) * Size: 80,000,003 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-------------------------------------|:---------------------------------------|:-----------------| | vanilla hair cream | free of paraben hair mask | 0.5 | | nourishing shampoo | cumin lemon tea | 0.0 | | safe materials pacifier | facial serum | 0.5 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Evaluation Dataset #### pairs_three_scores_v5 * Dataset: [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) at [3d8c457](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5/tree/3d8c45703846bd2adfaaf422abafbc389b283de1) * Size: 20,000,001 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------|:-----------------------------------|:-----------------| | teddy bear toy | long lasting cat food | 0.0 | | eva hair treatment | fresh pineapple | 0.0 | | soft wave hair conditioner | hybrid seat bike | 0.0 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:------:|:------:|:-------------:| | 0.0002 | 100 | 10.8792 | | 0.0003 | 200 | 10.9284 | | 0.0005 | 300 | 10.6466 | | 0.0006 | 400 | 10.841 | | 0.0008 | 500 | 10.8094 | | 0.0010 | 600 | 10.4323 | | 0.0011 | 700 | 10.3032 | | 0.0013 | 800 | 10.4006 | | 0.0014 | 900 | 10.4743 | | 0.0016 | 1000 | 10.2334 | | 0.0018 | 1100 | 10.0135 | | 0.0019 | 1200 | 9.7874 | | 0.0021 | 1300 | 9.7419 | | 0.0022 | 1400 | 9.7412 | | 0.0024 | 1500 | 9.4585 | | 0.0026 | 1600 | 9.5339 | | 0.0027 | 1700 | 9.4345 | | 0.0029 | 1800 | 9.1733 | | 0.0030 | 1900 | 8.9952 | | 0.0032 | 2000 | 8.9669 | | 0.0034 | 2100 | 8.8152 | | 0.0035 | 2200 | 8.7936 | | 0.0037 | 2300 | 8.6771 | | 0.0038 | 2400 | 8.4648 | | 0.0040 | 2500 | 8.5764 | | 0.0042 | 2600 | 8.4587 | | 0.0043 | 2700 | 8.2966 | | 0.0045 | 2800 | 8.2329 | | 0.0046 | 2900 | 8.1415 | | 0.0048 | 3000 | 8.0404 | | 0.0050 | 3100 | 7.9698 | | 0.0051 | 3200 | 7.9205 | | 0.0053 | 3300 | 7.8314 | | 0.0054 | 3400 | 7.8369 | | 0.0056 | 3500 | 7.6403 | | 0.0058 | 3600 | 7.5842 | | 0.0059 | 3700 | 7.5812 | | 0.0061 | 3800 | 7.4335 | | 0.0062 | 3900 | 7.4917 | | 0.0064 | 4000 | 7.3204 | | 0.0066 | 4100 | 7.2971 | | 0.0067 | 4200 | 7.2233 | | 0.0069 | 4300 | 7.2081 | | 0.0070 | 4400 | 7.1364 | | 0.0072 | 4500 | 7.0663 | | 0.0074 | 4600 | 6.9601 | | 0.0075 | 4700 | 6.9546 | | 0.0077 | 4800 | 6.9019 | | 0.0078 | 4900 | 6.8801 | | 0.0080 | 5000 | 6.7734 | | 0.0082 | 5100 | 6.7648 | | 0.0083 | 5200 | 6.7498 | | 0.0085 | 5300 | 6.6872 | | 0.0086 | 5400 | 6.6264 | | 0.0088 | 5500 | 6.579 | | 0.0090 | 5600 | 6.6001 | | 0.0091 | 5700 | 6.5971 | | 0.0093 | 5800 | 6.4694 | | 0.0094 | 5900 | 6.3983 | | 0.0096 | 6000 | 6.4477 | | 0.0098 | 6100 | 6.4308 | | 0.0099 | 6200 | 6.4248 | | 0.0101 | 6300 | 6.2642 | | 0.0102 | 6400 | 6.2763 | | 0.0104 | 6500 | 6.3878 | | 0.0106 | 6600 | 6.2601 | | 0.0107 | 6700 | 6.1789 | | 0.0109 | 6800 | 6.1773 | | 0.0110 | 6900 | 6.1439 | | 0.0112 | 7000 | 6.1863 | | 0.0114 | 7100 | 6.0513 | | 0.0115 | 7200 | 6.0671 | | 0.0117 | 7300 | 6.0212 | | 0.0118 | 7400 | 6.0043 | | 0.0120 | 7500 | 6.0166 | | 0.0122 | 7600 | 5.9754 | | 0.0123 | 7700 | 5.9211 | | 0.0125 | 7800 | 5.7867 | | 0.0126 | 7900 | 5.8534 | | 0.0128 | 8000 | 5.7708 | | 0.0130 | 8100 | 5.8328 | | 0.0131 | 8200 | 5.7417 | | 0.0133 | 8300 | 5.8097 | | 0.0134 | 8400 | 5.7578 | | 0.0136 | 8500 | 5.643 | | 0.0138 | 8600 | 5.6401 | | 0.0139 | 8700 | 5.6627 | | 0.0141 | 8800 | 5.6167 | | 0.0142 | 8900 | 5.6539 | | 0.0144 | 9000 | 5.4513 | | 0.0146 | 9100 | 5.4132 | | 0.0147 | 9200 | 5.4714 | | 0.0149 | 9300 | 5.4786 | | 0.0150 | 9400 | 5.3928 | | 0.0152 | 9500 | 5.4774 | | 0.0154 | 9600 | 5.2881 | | 0.0155 | 9700 | 5.3699 | | 0.0157 | 9800 | 5.1483 | | 0.0158 | 9900 | 5.3051 | | 0.0160 | 10000 | 5.2546 | | 0.0162 | 10100 | 5.2314 | | 0.0163 | 10200 | 5.1783 | | 0.0165 | 10300 | 5.2074 | | 0.0166 | 10400 | 5.2825 | | 0.0168 | 10500 | 5.1715 | | 0.0170 | 10600 | 5.087 | | 0.0171 | 10700 | 5.082 | | 0.0173 | 10800 | 4.9111 | | 0.0174 | 10900 | 5.0213 | | 0.0176 | 11000 | 4.9898 | | 0.0178 | 11100 | 4.7734 | | 0.0179 | 11200 | 4.9511 | | 0.0181 | 11300 | 5.0481 | | 0.0182 | 11400 | 4.8441 | | 0.0184 | 11500 | 4.873 | | 0.0186 | 11600 | 4.9988 | | 0.0187 | 11700 | 4.7653 | | 0.0189 | 11800 | 4.804 | | 0.0190 | 11900 | 4.8288 | | 0.0192 | 12000 | 4.7053 | | 0.0194 | 12100 | 4.6887 | | 0.0195 | 12200 | 4.7832 | | 0.0197 | 12300 | 4.6817 | | 0.0198 | 12400 | 4.6252 | | 0.0200 | 12500 | 4.5936 | | 0.0202 | 12600 | 4.7452 | | 0.0203 | 12700 | 4.5321 | | 0.0205 | 12800 | 4.4964 | | 0.0206 | 12900 | 4.4421 | | 0.0208 | 13000 | 4.3782 | | 0.0210 | 13100 | 4.5169 | | 0.0211 | 13200 | 4.533 | | 0.0213 | 13300 | 4.3725 | | 0.0214 | 13400 | 4.2911 | | 0.0216 | 13500 | 4.2261 | | 0.0218 | 13600 | 4.2467 | | 0.0219 | 13700 | 4.1558 | | 0.0221 | 13800 | 4.2794 | | 0.0222 | 13900 | 4.2383 | | 0.0224 | 14000 | 4.1654 | | 0.0226 | 14100 | 4.158 | | 0.0227 | 14200 | 4.1299 | | 0.0229 | 14300 | 4.1902 | | 0.0230 | 14400 | 3.7853 | | 0.0232 | 14500 | 4.0514 | | 0.0234 | 14600 | 4.1655 | | 0.0235 | 14700 | 4.051 | | 0.0237 | 14800 | 4.078 | | 0.0238 | 14900 | 4.1193 | | 0.0240 | 15000 | 4.1536 | | 0.0242 | 15100 | 3.935 | | 0.0243 | 15200 | 3.9535 | | 0.0245 | 15300 | 3.7051 | | 0.0246 | 15400 | 3.8329 | | 0.0248 | 15500 | 3.9412 | | 0.0250 | 15600 | 3.6668 | | 0.0251 | 15700 | 3.7758 | | 0.0253 | 15800 | 3.8805 | | 0.0254 | 15900 | 3.8848 | | 0.0256 | 16000 | 3.75 | | 0.0258 | 16100 | 3.5685 | | 0.0259 | 16200 | 3.7016 | | 0.0261 | 16300 | 4.0955 | | 0.0262 | 16400 | 3.7577 | | 0.0264 | 16500 | 3.7485 | | 0.0266 | 16600 | 3.8263 | | 0.0267 | 16700 | 3.6922 | | 0.0269 | 16800 | 3.6568 | | 0.0270 | 16900 | 3.7317 | | 0.0272 | 17000 | 3.5089 | | 0.0274 | 17100 | 3.7377 | | 0.0275 | 17200 | 3.6206 | | 0.0277 | 17300 | 3.3702 | | 0.0278 | 17400 | 3.5126 | | 0.0280 | 17500 | 3.4841 | | 0.0282 | 17600 | 3.1464 | | 0.0283 | 17700 | 3.7012 | | 0.0285 | 17800 | 3.5802 | | 0.0286 | 17900 | 3.4952 | | 0.0288 | 18000 | 3.1174 | | 0.0290 | 18100 | 3.3134 | | 0.0291 | 18200 | 3.3578 | | 0.0293 | 18300 | 3.0209 | | 0.0294 | 18400 | 3.3796 | | 0.0296 | 18500 | 3.2287 | | 0.0298 | 18600 | 3.1537 | | 0.0299 | 18700 | 2.9073 | | 0.0301 | 18800 | 3.3444 | | 0.0302 | 18900 | 3.1341 | | 0.0304 | 19000 | 2.8862 | | 0.0306 | 19100 | 3.2033 | | 0.0307 | 19200 | 3.2764 | | 0.0309 | 19300 | 3.0725 | | 0.0310 | 19400 | 3.0436 | | 0.0312 | 19500 | 3.3493 | | 0.0314 | 19600 | 3.0141 | | 0.0315 | 19700 | 2.779 | | 0.0317 | 19800 | 3.3543 | | 0.0318 | 19900 | 3.1526 | | 0.0320 | 20000 | 2.7896 | | 0.0322 | 20100 | 2.9398 | | 0.0323 | 20200 | 3.1254 | | 0.0325 | 20300 | 2.8832 | | 0.0326 | 20400 | 3.0542 | | 0.0328 | 20500 | 2.9722 | | 0.0330 | 20600 | 2.9321 | | 0.0331 | 20700 | 2.6448 | | 0.0333 | 20800 | 3.4006 | | 0.0334 | 20900 | 3.0022 | | 0.0336 | 21000 | 2.6366 | | 0.0338 | 21100 | 3.0112 | | 0.0339 | 21200 | 2.7856 | | 0.0341 | 21300 | 3.0967 | | 0.0342 | 21400 | 2.8754 | | 0.0344 | 21500 | 3.1269 | | 0.0346 | 21600 | 2.8235 | | 0.0347 | 21700 | 2.4912 | | 0.0349 | 21800 | 2.5079 | | 0.0350 | 21900 | 3.2942 | | 0.0352 | 22000 | 2.4184 | | 0.0354 | 22100 | 2.782 | | 0.0355 | 22200 | 2.7652 | | 0.0357 | 22300 | 3.113 | | 0.0358 | 22400 | 2.7451 | | 0.0360 | 22500 | 2.7473 | | 0.0362 | 22600 | 2.5116 | | 0.0363 | 22700 | 2.8531 | | 0.0365 | 22800 | 2.9171 | | 0.0366 | 22900 | 2.7954 | | 0.0368 | 23000 | 2.5376 | | 0.0370 | 23100 | 3.2488 | | 0.0371 | 23200 | 2.6131 | | 0.0373 | 23300 | 3.1343 | | 0.0374 | 23400 | 2.3159 | | 0.0376 | 23500 | 2.4225 | | 0.0378 | 23600 | 2.5034 | | 0.0379 | 23700 | 3.0067 | | 0.0381 | 23800 | 2.313 | | 0.0382 | 23900 | 2.5363 | | 0.0384 | 24000 | 2.7929 | | 0.0386 | 24100 | 2.617 | | 0.0387 | 24200 | 2.9711 | | 0.0389 | 24300 | 2.7726 | | 0.0390 | 24400 | 2.5849 | | 0.0392 | 24500 | 2.3231 | | 0.0394 | 24600 | 2.2477 | | 0.0395 | 24700 | 2.5487 | | 0.0397 | 24800 | 2.5175 | | 0.0398 | 24900 | 2.6758 | | 0.0400 | 25000 | 2.7313 | | 0.0402 | 25100 | 2.4846 | | 0.0403 | 25200 | 2.8697 | | 0.0405 | 25300 | 2.5289 | | 0.0406 | 25400 | 2.235 | | 0.0408 | 25500 | 2.5028 | | 0.0410 | 25600 | 2.6295 | | 0.0411 | 25700 | 2.6159 | | 0.0413 | 25800 | 2.4447 | | 0.0414 | 25900 | 2.7233 | | 0.0416 | 26000 | 2.5651 | | 0.0418 | 26100 | 2.1317 | | 0.0419 | 26200 | 2.6157 | | 0.0421 | 26300 | 2.7385 | | 0.0422 | 26400 | 2.4642 | | 0.0424 | 26500 | 2.0621 | | 0.0426 | 26600 | 2.3864 | | 0.0427 | 26700 | 2.6951 | | 0.0429 | 26800 | 2.2628 | | 0.0430 | 26900 | 2.7538 | | 0.0432 | 27000 | 2.6871 | | 0.0434 | 27100 | 2.2453 | | 0.0435 | 27200 | 1.6334 | | 0.0437 | 27300 | 2.666 | | 0.0438 | 27400 | 2.128 | | 0.0440 | 27500 | 2.7573 | | 0.0442 | 27600 | 2.5276 | | 0.0443 | 27700 | 2.2438 | | 0.0445 | 27800 | 2.3156 | | 0.0446 | 27900 | 2.1735 | | 0.0448 | 28000 | 2.1733 | | 0.0450 | 28100 | 2.4094 | | 0.0451 | 28200 | 2.8484 | | 0.0453 | 28300 | 2.4507 | | 0.0454 | 28400 | 2.6822 | | 0.0456 | 28500 | 2.1191 | | 0.0458 | 28600 | 2.0696 | | 0.0459 | 28700 | 2.4027 | | 0.0461 | 28800 | 1.7958 | | 0.0462 | 28900 | 2.5874 | | 0.0464 | 29000 | 2.2679 | | 0.0466 | 29100 | 2.6394 | | 0.0467 | 29200 | 1.7998 | | 0.0469 | 29300 | 2.6834 | | 0.0470 | 29400 | 2.1242 | | 0.0472 | 29500 | 2.0039 | | 0.0474 | 29600 | 2.018 | | 0.0475 | 29700 | 2.9357 | | 0.0477 | 29800 | 2.1914 | | 0.0478 | 29900 | 2.0968 | | 0.0480 | 30000 | 1.9762 | | 0.0482 | 30100 | 2.1436 | | 0.0483 | 30200 | 2.1919 | | 0.0485 | 30300 | 1.9683 | | 0.0486 | 30400 | 2.3543 | | 0.0488 | 30500 | 2.0642 | | 0.0490 | 30600 | 1.8447 | | 0.0491 | 30700 | 2.3467 | | 0.0493 | 30800 | 2.6461 | | 0.0494 | 30900 | 2.028 | | 0.0496 | 31000 | 1.4188 | | 0.0498 | 31100 | 2.7219 | | 0.0499 | 31200 | 2.2345 | | 0.0501 | 31300 | 2.201 | | 0.0502 | 31400 | 2.092 | | 0.0504 | 31500 | 2.2871 | | 0.0506 | 31600 | 2.0167 | | 0.0507 | 31700 | 1.9175 | | 0.0509 | 31800 | 2.2229 | | 0.0510 | 31900 | 2.1196 | | 0.0512 | 32000 | 2.2192 | | 0.0514 | 32100 | 1.6462 | | 0.0515 | 32200 | 2.099 | | 0.0517 | 32300 | 2.0914 | | 0.0518 | 32400 | 2.3295 | | 0.0520 | 32500 | 2.256 | | 0.0522 | 32600 | 1.7662 | | 0.0523 | 32700 | 1.7234 | | 0.0525 | 32800 | 1.984 | | 0.0526 | 32900 | 2.1815 | | 0.0528 | 33000 | 1.4987 | | 0.0530 | 33100 | 2.0034 | | 0.0531 | 33200 | 2.6008 | | 0.0533 | 33300 | 2.4585 | | 0.0534 | 33400 | 1.881 | | 0.0536 | 33500 | 1.8738 | | 0.0538 | 33600 | 1.9726 | | 0.0539 | 33700 | 2.3734 | | 0.0541 | 33800 | 1.6898 | | 0.0542 | 33900 | 2.2171 | | 0.0544 | 34000 | 1.4453 | | 0.0546 | 34100 | 1.5057 | | 0.0547 | 34200 | 2.1497 | | 0.0549 | 34300 | 1.8618 | | 0.0550 | 34400 | 1.7878 | | 0.0552 | 34500 | 1.8199 | | 0.0554 | 34600 | 2.1649 | | 0.0555 | 34700 | 1.7906 | | 0.0557 | 34800 | 1.6816 | | 0.0558 | 34900 | 2.1464 | | 0.0560 | 35000 | 2.0039 | | 0.0562 | 35100 | 1.735 | | 0.0563 | 35200 | 1.853 | | 0.0565 | 35300 | 1.6068 | | 0.0566 | 35400 | 1.6349 | | 0.0568 | 35500 | 1.9571 | | 0.0570 | 35600 | 1.5854 | | 0.0571 | 35700 | 1.9756 | | 0.0573 | 35800 | 1.9816 | | 0.0574 | 35900 | 1.6758 | | 0.0576 | 36000 | 2.2583 | | 0.0578 | 36100 | 1.7584 | | 0.0579 | 36200 | 1.9894 | | 0.0581 | 36300 | 2.3922 | | 0.0582 | 36400 | 2.0077 | | 0.0584 | 36500 | 2.3684 | | 0.0586 | 36600 | 2.1103 | | 0.0587 | 36700 | 2.0728 | | 0.0589 | 36800 | 1.9364 | | 0.0590 | 36900 | 2.5203 | | 0.0592 | 37000 | 1.8473 | | 0.0594 | 37100 | 1.8076 | | 0.0595 | 37200 | 2.0157 | | 0.0597 | 37300 | 2.1587 | | 0.0598 | 37400 | 1.9825 | | 0.0600 | 37500 | 2.0693 | | 0.0602 | 37600 | 1.5505 | | 0.0603 | 37700 | 1.5472 | | 0.0605 | 37800 | 2.0568 | | 0.0606 | 37900 | 1.9219 | | 0.0608 | 38000 | 2.091 | | 0.0610 | 38100 | 2.0523 | | 0.0611 | 38200 | 1.7628 | | 0.0613 | 38300 | 1.8753 | | 0.0614 | 38400 | 1.846 | | 0.0616 | 38500 | 1.803 | | 0.0618 | 38600 | 2.1226 | | 0.0619 | 38700 | 2.0906 | | 0.0621 | 38800 | 1.4321 | | 0.0622 | 38900 | 2.5214 | | 0.0624 | 39000 | 1.5412 | | 0.0626 | 39100 | 1.4382 | | 0.0627 | 39200 | 1.8417 | | 0.0629 | 39300 | 2.1105 | | 0.0630 | 39400 | 1.6347 | | 0.0632 | 39500 | 2.0372 | | 0.0634 | 39600 | 1.6222 | | 0.0635 | 39700 | 1.8033 | | 0.0637 | 39800 | 1.9847 | | 0.0638 | 39900 | 2.1354 | | 0.0640 | 40000 | 1.6792 | | 0.0642 | 40100 | 2.1055 | | 0.0643 | 40200 | 2.0657 | | 0.0645 | 40300 | 1.9618 | | 0.0646 | 40400 | 1.5807 | | 0.0648 | 40500 | 1.6451 | | 0.0650 | 40600 | 2.1299 | | 0.0651 | 40700 | 1.9912 | | 0.0653 | 40800 | 1.6392 | | 0.0654 | 40900 | 1.8049 | | 0.0656 | 41000 | 1.9832 | | 0.0658 | 41100 | 2.0309 | | 0.0659 | 41200 | 1.8362 | | 0.0661 | 41300 | 2.2709 | | 0.0662 | 41400 | 2.0785 | | 0.0664 | 41500 | 1.5627 | | 0.0666 | 41600 | 1.6058 | | 0.0667 | 41700 | 1.7099 | | 0.0669 | 41800 | 1.7096 | | 0.0670 | 41900 | 1.6429 | | 0.0672 | 42000 | 1.2514 | | 0.0674 | 42100 | 1.5746 | | 0.0675 | 42200 | 1.7186 | | 0.0677 | 42300 | 1.8152 | | 0.0678 | 42400 | 1.705 | | 0.0680 | 42500 | 1.6779 | | 0.0682 | 42600 | 1.8157 | | 0.0683 | 42700 | 1.8464 | | 0.0685 | 42800 | 1.748 | | 0.0686 | 42900 | 1.6836 | | 0.0688 | 43000 | 1.65 | | 0.0690 | 43100 | 1.5632 | | 0.0691 | 43200 | 2.0987 | | 0.0693 | 43300 | 1.5783 | | 0.0694 | 43400 | 1.8029 | | 0.0696 | 43500 | 1.7154 | | 0.0698 | 43600 | 1.663 | | 0.0699 | 43700 | 1.4403 | | 0.0701 | 43800 | 1.6513 | | 0.0702 | 43900 | 2.2041 | | 0.0704 | 44000 | 2.3908 | | 0.0706 | 44100 | 1.7153 | | 0.0707 | 44200 | 2.2112 | | 0.0709 | 44300 | 1.8663 | | 0.0710 | 44400 | 1.8206 | | 0.0712 | 44500 | 2.2269 | | 0.0714 | 44600 | 1.8159 | | 0.0715 | 44700 | 1.9257 | | 0.0717 | 44800 | 2.087 | | 0.0718 | 44900 | 1.3623 | | 0.0720 | 45000 | 1.5747 | | 0.0722 | 45100 | 1.8051 | | 0.0723 | 45200 | 2.3691 | | 0.0725 | 45300 | 2.1125 | | 0.0726 | 45400 | 1.566 | | 0.0728 | 45500 | 1.5042 | | 0.0730 | 45600 | 1.9469 | | 0.0731 | 45700 | 1.9346 | | 0.0733 | 45800 | 1.4362 | | 0.0734 | 45900 | 1.9164 | | 0.0736 | 46000 | 1.511 | | 0.0738 | 46100 | 1.4523 | | 0.0739 | 46200 | 1.1247 | | 0.0741 | 46300 | 1.9694 | | 0.0742 | 46400 | 2.1909 | | 0.0744 | 46500 | 2.0247 | | 0.0746 | 46600 | 1.2061 | | 0.0747 | 46700 | 1.6151 | | 0.0749 | 46800 | 1.6184 | | 0.0750 | 46900 | 2.0375 | | 0.0752 | 47000 | 1.8357 | | 0.0754 | 47100 | 1.7605 | | 0.0755 | 47200 | 2.1139 | | 0.0757 | 47300 | 1.2971 | | 0.0758 | 47400 | 1.7242 | | 0.0760 | 47500 | 1.2726 | | 0.0762 | 47600 | 1.9947 | | 0.0763 | 47700 | 2.2796 | | 0.0765 | 47800 | 1.6232 | | 0.0766 | 47900 | 1.3513 | | 0.0768 | 48000 | 1.291 | | 0.0770 | 48100 | 1.5954 | | 0.0771 | 48200 | 1.6232 | | 0.0773 | 48300 | 1.8858 | | 0.0774 | 48400 | 1.6235 | | 0.0776 | 48500 | 1.9061 | | 0.0778 | 48600 | 1.5919 | | 0.0779 | 48700 | 1.8474 | | 0.0781 | 48800 | 1.7112 | | 0.0782 | 48900 | 1.8007 | | 0.0784 | 49000 | 1.7499 | | 0.0786 | 49100 | 1.4046 | | 0.0787 | 49200 | 2.0843 | | 0.0789 | 49300 | 1.52 | | 0.0790 | 49400 | 1.8708 | | 0.0792 | 49500 | 1.673 | | 0.0794 | 49600 | 1.8457 | | 0.0795 | 49700 | 1.5627 | | 0.0797 | 49800 | 1.6497 | | 0.0798 | 49900 | 1.5787 | | 0.0800 | 50000 | 1.8507 | | 0.0802 | 50100 | 1.4336 | | 0.0803 | 50200 | 2.152 | | 0.0805 | 50300 | 1.6311 | | 0.0806 | 50400 | 1.7442 | | 0.0808 | 50500 | 1.8063 | | 0.0810 | 50600 | 1.4 | | 0.0811 | 50700 | 1.6401 | | 0.0813 | 50800 | 1.9426 | | 0.0814 | 50900 | 2.0937 | | 0.0816 | 51000 | 1.8187 | | 0.0818 | 51100 | 2.1751 | | 0.0819 | 51200 | 2.1703 | | 0.0821 | 51300 | 1.4443 | | 0.0822 | 51400 | 1.9266 | | 0.0824 | 51500 | 1.8226 | | 0.0826 | 51600 | 1.4394 | | 0.0827 | 51700 | 1.052 | | 0.0829 | 51800 | 1.0614 | | 0.0830 | 51900 | 1.4591 | | 0.0832 | 52000 | 1.6479 | | 0.0834 | 52100 | 1.7548 | | 0.0835 | 52200 | 1.6293 | | 0.0837 | 52300 | 1.7183 | | 0.0838 | 52400 | 1.2329 | | 0.0840 | 52500 | 1.5292 | | 0.0842 | 52600 | 1.6752 | | 0.0843 | 52700 | 1.3228 | | 0.0845 | 52800 | 1.485 | | 0.0846 | 52900 | 1.4228 | | 0.0848 | 53000 | 1.1385 | | 0.0850 | 53100 | 1.1812 | | 0.0851 | 53200 | 1.4763 | | 0.0853 | 53300 | 1.9444 | | 0.0854 | 53400 | 1.5316 | | 0.0856 | 53500 | 1.6928 | | 0.0858 | 53600 | 1.4466 | | 0.0859 | 53700 | 1.438 | | 0.0861 | 53800 | 1.1629 | | 0.0862 | 53900 | 1.3017 | | 0.0864 | 54000 | 1.6614 | | 0.0866 | 54100 | 1.4535 | | 0.0867 | 54200 | 1.7061 | | 0.0869 | 54300 | 1.4681 | | 0.0870 | 54400 | 1.3449 | | 0.0872 | 54500 | 1.8814 | | 0.0874 | 54600 | 1.5989 | | 0.0875 | 54700 | 1.3711 | | 0.0877 | 54800 | 1.3199 | | 0.0878 | 54900 | 1.3713 | | 0.0880 | 55000 | 1.441 | | 0.0882 | 55100 | 1.268 | | 0.0883 | 55200 | 1.1648 | | 0.0885 | 55300 | 1.8108 | | 0.0886 | 55400 | 1.4904 | | 0.0888 | 55500 | 1.2555 | | 0.0890 | 55600 | 1.2733 | | 0.0891 | 55700 | 1.5194 | | 0.0893 | 55800 | 1.7587 | | 0.0894 | 55900 | 1.6183 | | 0.0896 | 56000 | 1.3596 | | 0.0898 | 56100 | 1.5248 | | 0.0899 | 56200 | 1.5177 | | 0.0901 | 56300 | 1.7579 | | 0.0902 | 56400 | 1.5508 | | 0.0904 | 56500 | 1.5965 | | 0.0906 | 56600 | 1.5762 | | 0.0907 | 56700 | 1.7441 | | 0.0909 | 56800 | 2.0257 | | 0.0910 | 56900 | 1.1371 | | 0.0912 | 57000 | 1.8825 | | 0.0914 | 57100 | 1.0455 | | 0.0915 | 57200 | 1.5889 | | 0.0917 | 57300 | 1.192 | | 0.0918 | 57400 | 1.5374 | | 0.0920 | 57500 | 1.6236 | | 0.0922 | 57600 | 1.8945 | | 0.0923 | 57700 | 1.607 | | 0.0925 | 57800 | 1.8133 | | 0.0926 | 57900 | 1.5777 | | 0.0928 | 58000 | 1.5043 | | 0.0930 | 58100 | 1.7681 | | 0.0931 | 58200 | 1.623 | | 0.0933 | 58300 | 2.2137 | | 0.0934 | 58400 | 2.2447 | | 0.0936 | 58500 | 2.3013 | | 0.0938 | 58600 | 1.3105 | | 0.0939 | 58700 | 1.4461 | | 0.0941 | 58800 | 2.1321 | | 0.0942 | 58900 | 1.7541 | | 0.0944 | 59000 | 1.7894 | | 0.0946 | 59100 | 1.693 | | 0.0947 | 59200 | 1.7073 | | 0.0949 | 59300 | 2.0305 | | 0.0950 | 59400 | 1.3684 | | 0.0952 | 59500 | 1.8754 | | 0.0954 | 59600 | 2.0225 | | 0.0955 | 59700 | 2.1975 | | 0.0957 | 59800 | 1.7173 | | 0.0958 | 59900 | 1.4302 | | 0.0960 | 60000 | 1.2497 | | 0.0962 | 60100 | 1.4058 | | 0.0963 | 60200 | 1.0956 | | 0.0965 | 60300 | 1.3731 | | 0.0966 | 60400 | 1.2953 | | 0.0968 | 60500 | 1.0987 | | 0.0970 | 60600 | 1.5104 | | 0.0971 | 60700 | 1.5224 | | 0.0973 | 60800 | 1.3982 | | 0.0974 | 60900 | 1.2785 | | 0.0976 | 61000 | 1.6018 | | 0.0978 | 61100 | 1.4968 | | 0.0979 | 61200 | 1.2423 | | 0.0981 | 61300 | 1.9973 | | 0.0982 | 61400 | 1.2149 | | 0.0984 | 61500 | 1.731 | | 0.0986 | 61600 | 1.2889 | | 0.0987 | 61700 | 1.856 | | 0.0989 | 61800 | 0.8942 | | 0.0990 | 61900 | 1.3371 | | 0.0992 | 62000 | 1.5222 | | 0.0994 | 62100 | 1.5435 | | 0.0995 | 62200 | 1.1172 | | 0.0997 | 62300 | 1.6024 | | 0.0998 | 62400 | 1.3914 | | 0.1000 | 62500 | 1.4714 | | 0.1002 | 62600 | 1.2922 | | 0.1003 | 62700 | 1.4263 | | 0.1005 | 62800 | 1.4586 | | 0.1006 | 62900 | 1.6312 | | 0.1008 | 63000 | 1.9607 | | 0.1010 | 63100 | 1.5771 | | 0.1011 | 63200 | 1.6721 | | 0.1013 | 63300 | 1.8461 | | 0.1014 | 63400 | 1.5256 | | 0.1016 | 63500 | 1.9736 | | 0.1018 | 63600 | 1.4735 | | 0.1019 | 63700 | 1.4619 | | 0.1021 | 63800 | 1.6571 | | 0.1022 | 63900 | 1.5888 | | 0.1024 | 64000 | 2.0457 | | 0.1026 | 64100 | 1.7843 | | 0.1027 | 64200 | 1.5116 | | 0.1029 | 64300 | 1.6682 | | 0.1030 | 64400 | 1.2137 | | 0.1032 | 64500 | 1.1308 | | 0.1034 | 64600 | 2.031 | | 0.1035 | 64700 | 1.6903 | | 0.1037 | 64800 | 1.3365 | | 0.1038 | 64900 | 1.5736 | | 0.1040 | 65000 | 1.7264 | | 0.1042 | 65100 | 1.1781 | | 0.1043 | 65200 | 1.2503 | | 0.1045 | 65300 | 0.9432 | | 0.1046 | 65400 | 1.264 | | 0.1048 | 65500 | 1.2086 | | 0.1050 | 65600 | 1.8692 | | 0.1051 | 65700 | 1.2745 | | 0.1053 | 65800 | 1.6839 | | 0.1054 | 65900 | 1.4509 | | 0.1056 | 66000 | 1.1615 | | 0.1058 | 66100 | 1.4458 | | 0.1059 | 66200 | 1.8329 | | 0.1061 | 66300 | 1.567 | | 0.1062 | 66400 | 1.6746 | | 0.1064 | 66500 | 1.65 | | 0.1066 | 66600 | 1.5497 | | 0.1067 | 66700 | 1.4009 | | 0.1069 | 66800 | 2.058 | | 0.1070 | 66900 | 1.6306 | | 0.1072 | 67000 | 1.4377 | | 0.1074 | 67100 | 1.4501 | | 0.1075 | 67200 | 1.2648 | | 0.1077 | 67300 | 1.3186 | | 0.1078 | 67400 | 1.1313 | | 0.1080 | 67500 | 2.2523 | | 0.1082 | 67600 | 1.9146 | | 0.1083 | 67700 | 1.7334 | | 0.1085 | 67800 | 1.7195 | | 0.1086 | 67900 | 1.4661 | | 0.1088 | 68000 | 1.3503 | | 0.1090 | 68100 | 1.0129 | | 0.1091 | 68200 | 1.6036 | | 0.1093 | 68300 | 0.9312 | | 0.1094 | 68400 | 1.5817 | | 0.1096 | 68500 | 1.2024 | | 0.1098 | 68600 | 0.985 | | 0.1099 | 68700 | 1.1712 | | 0.1101 | 68800 | 1.5874 | | 0.1102 | 68900 | 1.8551 | | 0.1104 | 69000 | 1.232 | | 0.1106 | 69100 | 1.4688 | | 0.1107 | 69200 | 1.1107 | | 0.1109 | 69300 | 1.6495 | | 0.1110 | 69400 | 1.6278 | | 0.1112 | 69500 | 1.7135 | | 0.1114 | 69600 | 1.5108 | | 0.1115 | 69700 | 1.4056 | | 0.1117 | 69800 | 0.9324 | | 0.1118 | 69900 | 1.3613 | | 0.1120 | 70000 | 1.5283 | | 0.1122 | 70100 | 1.3809 | | 0.1123 | 70200 | 1.5552 | | 0.1125 | 70300 | 1.4567 | | 0.1126 | 70400 | 1.4404 | | 0.1128 | 70500 | 1.1805 | | 0.1130 | 70600 | 2.514 | | 0.1131 | 70700 | 1.4821 | | 0.1133 | 70800 | 1.5156 | | 0.1134 | 70900 | 1.5925 | | 0.1136 | 71000 | 1.9517 | | 0.1138 | 71100 | 1.2685 | | 0.1139 | 71200 | 1.6314 | | 0.1141 | 71300 | 1.5252 | | 0.1142 | 71400 | 1.5176 | | 0.1144 | 71500 | 1.3461 | | 0.1146 | 71600 | 1.3832 | | 0.1147 | 71700 | 1.2962 | | 0.1149 | 71800 | 1.5179 | | 0.1150 | 71900 | 1.1041 | | 0.1152 | 72000 | 1.5031 | | 0.1154 | 72100 | 1.5412 | | 0.1155 | 72200 | 1.2971 | | 0.1157 | 72300 | 1.0979 | | 0.1158 | 72400 | 1.307 | | 0.1160 | 72500 | 1.3418 | | 0.1162 | 72600 | 1.7298 | | 0.1163 | 72700 | 1.68 | | 0.1165 | 72800 | 1.3106 | | 0.1166 | 72900 | 1.0954 | | 0.1168 | 73000 | 1.5994 | | 0.1170 | 73100 | 1.5953 | | 0.1171 | 73200 | 1.9498 | | 0.1173 | 73300 | 0.9937 | | 0.1174 | 73400 | 1.4753 | | 0.1176 | 73500 | 1.417 | | 0.1178 | 73600 | 1.596 | | 0.1179 | 73700 | 1.8794 | | 0.1181 | 73800 | 1.3118 | | 0.1182 | 73900 | 1.732 | | 0.1184 | 74000 | 1.4504 | | 0.1186 | 74100 | 1.0878 | | 0.1187 | 74200 | 1.2488 | | 0.1189 | 74300 | 1.3887 | | 0.1190 | 74400 | 1.2265 | | 0.1192 | 74500 | 1.4668 | | 0.1194 | 74600 | 1.6258 | | 0.1195 | 74700 | 1.9551 | | 0.1197 | 74800 | 1.1811 | | 0.1198 | 74900 | 1.2119 | | 0.1200 | 75000 | 1.4051 | | 0.1202 | 75100 | 1.2587 | | 0.1203 | 75200 | 1.4563 | | 0.1205 | 75300 | 1.5581 | | 0.1206 | 75400 | 1.5457 | | 0.1208 | 75500 | 1.2675 | | 0.1210 | 75600 | 1.0948 | | 0.1211 | 75700 | 1.2045 | | 0.1213 | 75800 | 1.5964 | | 0.1214 | 75900 | 1.0517 | | 0.1216 | 76000 | 1.2883 | | 0.1218 | 76100 | 1.2276 | | 0.1219 | 76200 | 1.2463 | | 0.1221 | 76300 | 1.241 | | 0.1222 | 76400 | 1.8648 | | 0.1224 | 76500 | 1.4848 | | 0.1226 | 76600 | 1.413 | | 0.1227 | 76700 | 1.594 | | 0.1229 | 76800 | 1.3682 | | 0.1230 | 76900 | 1.159 | | 0.1232 | 77000 | 1.4702 | | 0.1234 | 77100 | 1.3251 | | 0.1235 | 77200 | 1.0538 | | 0.1237 | 77300 | 1.1708 | | 0.1238 | 77400 | 1.2864 | | 0.1240 | 77500 | 1.6501 | | 0.1242 | 77600 | 1.0104 | | 0.1243 | 77700 | 1.7969 | | 0.1245 | 77800 | 1.0293 | | 0.1246 | 77900 | 1.5593 | | 0.1248 | 78000 | 0.9902 | | 0.1250 | 78100 | 1.058 | | 0.1251 | 78200 | 1.4039 | | 0.1253 | 78300 | 1.008 | | 0.1254 | 78400 | 1.4593 | | 0.1256 | 78500 | 1.563 | | 0.1258 | 78600 | 1.1569 | | 0.1259 | 78700 | 1.3886 | | 0.1261 | 78800 | 1.061 | | 0.1262 | 78900 | 1.2085 | | 0.1264 | 79000 | 1.8553 | | 0.1266 | 79100 | 1.7144 | | 0.1267 | 79200 | 1.2216 | | 0.1269 | 79300 | 1.1646 | | 0.1270 | 79400 | 1.7768 | | 0.1272 | 79500 | 1.1314 | | 0.1274 | 79600 | 1.2374 | | 0.1275 | 79700 | 1.2681 | | 0.1277 | 79800 | 1.2624 | | 0.1278 | 79900 | 1.6775 | | 0.1280 | 80000 | 1.3587 | | 0.1282 | 80100 | 1.7402 | | 0.1283 | 80200 | 1.5349 | | 0.1285 | 80300 | 0.8546 | | 0.1286 | 80400 | 1.3903 | | 0.1288 | 80500 | 1.0712 | | 0.1290 | 80600 | 1.6633 | | 0.1291 | 80700 | 1.4125 | | 0.1293 | 80800 | 0.6973 | | 0.1294 | 80900 | 1.1729 | | 0.1296 | 81000 | 1.2217 | | 0.1298 | 81100 | 1.3184 | | 0.1299 | 81200 | 1.2718 | | 0.1301 | 81300 | 1.1913 | | 0.1302 | 81400 | 1.4728 | | 0.1304 | 81500 | 1.1221 | | 0.1306 | 81600 | 1.235 | | 0.1307 | 81700 | 1.3497 | | 0.1309 | 81800 | 1.2361 | | 0.1310 | 81900 | 2.0015 | | 0.1312 | 82000 | 1.2259 | | 0.1314 | 82100 | 0.9236 | | 0.1315 | 82200 | 1.5339 | | 0.1317 | 82300 | 1.2036 | | 0.1318 | 82400 | 1.2631 | | 0.1320 | 82500 | 1.0858 | | 0.1322 | 82600 | 1.635 | | 0.1323 | 82700 | 1.285 | | 0.1325 | 82800 | 1.1209 | | 0.1326 | 82900 | 1.4032 | | 0.1328 | 83000 | 1.1279 | | 0.1330 | 83100 | 1.5145 | | 0.1331 | 83200 | 1.4923 | | 0.1333 | 83300 | 0.9845 | | 0.1334 | 83400 | 1.3847 | | 0.1336 | 83500 | 1.0149 | | 0.1338 | 83600 | 1.2644 | | 0.1339 | 83700 | 1.2981 | | 0.1341 | 83800 | 1.6903 | | 0.1342 | 83900 | 1.2846 | | 0.1344 | 84000 | 1.4647 | | 0.1346 | 84100 | 1.1213 | | 0.1347 | 84200 | 1.1379 | | 0.1349 | 84300 | 1.2793 | | 0.1350 | 84400 | 1.343 | | 0.1352 | 84500 | 1.8342 | | 0.1354 | 84600 | 1.0487 | | 0.1355 | 84700 | 1.1531 | | 0.1357 | 84800 | 0.8552 | | 0.1358 | 84900 | 1.1422 | | 0.1360 | 85000 | 1.0918 | | 0.1362 | 85100 | 1.2873 | | 0.1363 | 85200 | 1.547 | | 0.1365 | 85300 | 1.5094 | | 0.1366 | 85400 | 1.051 | | 0.1368 | 85500 | 0.9952 | | 0.1370 | 85600 | 1.1978 | | 0.1371 | 85700 | 1.5221 | | 0.1373 | 85800 | 1.3841 | | 0.1374 | 85900 | 1.3999 | | 0.1376 | 86000 | 1.5574 | | 0.1378 | 86100 | 1.3267 | | 0.1379 | 86200 | 1.358 | | 0.1381 | 86300 | 1.5441 | | 0.1382 | 86400 | 1.4124 | | 0.1384 | 86500 | 0.8352 | | 0.1386 | 86600 | 1.2549 | | 0.1387 | 86700 | 1.4328 | | 0.1389 | 86800 | 1.2577 | | 0.1390 | 86900 | 1.4417 | | 0.1392 | 87000 | 1.1927 | | 0.1394 | 87100 | 1.4435 | | 0.1395 | 87200 | 1.3579 | | 0.1397 | 87300 | 1.3883 | | 0.1398 | 87400 | 1.2645 | | 0.1400 | 87500 | 1.1366 | | 0.1402 | 87600 | 1.4566 | | 0.1403 | 87700 | 1.447 | | 0.1405 | 87800 | 1.0701 | | 0.1406 | 87900 | 1.3449 | | 0.1408 | 88000 | 1.4331 | | 0.1410 | 88100 | 1.3965 | | 0.1411 | 88200 | 1.347 | | 0.1413 | 88300 | 1.0262 | | 0.1414 | 88400 | 1.0787 | | 0.1416 | 88500 | 1.3829 | | 0.1418 | 88600 | 1.2001 | | 0.1419 | 88700 | 1.2407 | | 0.1421 | 88800 | 1.6291 | | 0.1422 | 88900 | 1.1502 | | 0.1424 | 89000 | 1.2155 | | 0.1426 | 89100 | 1.3381 | | 0.1427 | 89200 | 0.819 | | 0.1429 | 89300 | 1.0402 | | 0.1430 | 89400 | 1.1062 | | 0.1432 | 89500 | 1.6693 | | 0.1434 | 89600 | 1.1991 | | 0.1435 | 89700 | 1.3535 | | 0.1437 | 89800 | 1.6776 | | 0.1438 | 89900 | 1.2221 | | 0.1440 | 90000 | 1.0253 | | 0.1442 | 90100 | 1.0469 | | 0.1443 | 90200 | 1.2465 | | 0.1445 | 90300 | 1.4068 | | 0.1446 | 90400 | 1.5961 | | 0.1448 | 90500 | 1.0579 | | 0.1450 | 90600 | 0.941 | | 0.1451 | 90700 | 1.1861 | | 0.1453 | 90800 | 1.4697 | | 0.1454 | 90900 | 0.6486 | | 0.1456 | 91000 | 1.3865 | | 0.1458 | 91100 | 1.1494 | | 0.1459 | 91200 | 1.3623 | | 0.1461 | 91300 | 1.2193 | | 0.1462 | 91400 | 1.3003 | | 0.1464 | 91500 | 1.2608 | | 0.1466 | 91600 | 1.2544 | | 0.1467 | 91700 | 1.332 | | 0.1469 | 91800 | 1.3548 | | 0.1470 | 91900 | 1.54 | | 0.1472 | 92000 | 1.3125 | | 0.1474 | 92100 | 0.897 | | 0.1475 | 92200 | 1.1594 | | 0.1477 | 92300 | 0.9194 | | 0.1478 | 92400 | 1.2209 | | 0.1480 | 92500 | 1.0027 | | 0.1482 | 92600 | 1.4675 | | 0.1483 | 92700 | 1.3982 | | 0.1485 | 92800 | 0.8595 | | 0.1486 | 92900 | 1.572 | | 0.1488 | 93000 | 1.2832 | | 0.1490 | 93100 | 1.2838 | | 0.1491 | 93200 | 1.6535 | | 0.1493 | 93300 | 1.5996 | | 0.1494 | 93400 | 1.058 | | 0.1496 | 93500 | 1.3316 | | 0.1498 | 93600 | 0.8627 | | 0.1499 | 93700 | 1.4411 | | 0.1501 | 93800 | 0.9331 | | 0.1502 | 93900 | 1.0032 | | 0.1504 | 94000 | 1.2341 | | 0.1506 | 94100 | 1.3369 | | 0.1507 | 94200 | 1.2324 | | 0.1509 | 94300 | 1.6952 | | 0.1510 | 94400 | 1.2401 | | 0.1512 | 94500 | 1.2998 | | 0.1514 | 94600 | 1.1458 | | 0.1515 | 94700 | 1.0211 | | 0.1517 | 94800 | 0.9866 | | 0.1518 | 94900 | 1.3636 | | 0.1520 | 95000 | 1.1485 | | 0.1522 | 95100 | 0.7671 | | 0.1523 | 95200 | 1.0069 | | 0.1525 | 95300 | 1.1276 | | 0.1526 | 95400 | 1.4477 | | 0.1528 | 95500 | 0.9887 | | 0.1530 | 95600 | 1.065 | | 0.1531 | 95700 | 0.982 | | 0.1533 | 95800 | 1.1166 | | 0.1534 | 95900 | 1.3949 | | 0.1536 | 96000 | 1.4164 | | 0.1538 | 96100 | 1.7997 | | 0.1539 | 96200 | 1.3941 | | 0.1541 | 96300 | 1.0592 | | 0.1542 | 96400 | 1.1661 | | 0.1544 | 96500 | 1.5968 | | 0.1546 | 96600 | 1.2586 | | 0.1547 | 96700 | 1.5164 | | 0.1549 | 96800 | 1.5942 | | 0.1550 | 96900 | 0.6635 | | 0.1552 | 97000 | 1.3037 | | 0.1554 | 97100 | 1.3557 | | 0.1555 | 97200 | 1.0864 | | 0.1557 | 97300 | 1.3139 | | 0.1558 | 97400 | 0.7139 | | 0.1560 | 97500 | 1.1084 | | 0.1562 | 97600 | 1.2294 | | 0.1563 | 97700 | 0.9581 | | 0.1565 | 97800 | 1.2983 | | 0.1566 | 97900 | 1.8281 | | 0.1568 | 98000 | 1.2914 | | 0.1570 | 98100 | 0.8656 | | 0.1571 | 98200 | 1.3438 | | 0.1573 | 98300 | 1.465 | | 0.1574 | 98400 | 1.2253 | | 0.1576 | 98500 | 1.3481 | | 0.1578 | 98600 | 1.5131 | | 0.1579 | 98700 | 1.4852 | | 0.1581 | 98800 | 1.1317 | | 0.1582 | 98900 | 1.0395 | | 0.1584 | 99000 | 0.9256 | | 0.1586 | 99100 | 0.9774 | | 0.1587 | 99200 | 0.9756 | | 0.1589 | 99300 | 1.4885 | | 0.1590 | 99400 | 1.2373 | | 0.1592 | 99500 | 1.3868 | | 0.1594 | 99600 | 0.9238 | | 0.1595 | 99700 | 1.0793 | | 0.1597 | 99800 | 1.2405 | | 0.1598 | 99900 | 1.2417 | | 0.1600 | 100000 | 1.1264 |
### Framework Versions - Python: 3.8.10 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.4.1+cu118 - Accelerate: 1.0.1 - Datasets: 3.0.1 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```