---
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets:
- youssefkhalil320/pairs_three_scores_v5
language:
- en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:80000003
- loss:CoSENTLoss
widget:
- source_sentence: durable pvc swim ring
sentences:
- flaky croissant
- urban shoes
- warm drinks mug
- source_sentence: iso mak retard capsules
sentences:
- savory baguette
- shea butter body cream
- softwheeled cruiser
- source_sentence: love sandra potty
sentences:
- utensil holder
- olive pants
- headwear
- source_sentence: dusky hair brush
sentences:
- back compartment laptop
- rubber feet platter
- honed blade knife
- source_sentence: nkd skn
sentences:
- fruit fragrances nail polish remover
- panini salmon
- hand drawing bag
---
# all-MiniLM-L6-v8-pair_score
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'nkd skn',
'hand drawing bag',
'panini salmon',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### pairs_three_scores_v5
* Dataset: [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) at [3d8c457](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5/tree/3d8c45703846bd2adfaaf422abafbc389b283de1)
* Size: 80,000,003 training samples
* Columns: sentence1, sentence2, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
- min: 3 tokens
- mean: 6.06 tokens
- max: 12 tokens
| - min: 3 tokens
- mean: 5.71 tokens
- max: 13 tokens
| - min: 0.0
- mean: 0.11
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:-------------------------------------|:---------------------------------------|:-----------------|
| vanilla hair cream | free of paraben hair mask | 0.5 |
| nourishing shampoo | cumin lemon tea | 0.0 |
| safe materials pacifier | facial serum | 0.5 |
* Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### pairs_three_scores_v5
* Dataset: [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) at [3d8c457](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5/tree/3d8c45703846bd2adfaaf422abafbc389b283de1)
* Size: 20,000,001 evaluation samples
* Columns: sentence1, sentence2, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 3 tokens
- mean: 6.21 tokens
- max: 12 tokens
| - min: 3 tokens
- mean: 5.75 tokens
- max: 12 tokens
| - min: 0.0
- mean: 0.11
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:----------------------------------------|:-----------------------------------|:-----------------|
| teddy bear toy | long lasting cat food | 0.0 |
| eva hair treatment | fresh pineapple | 0.0 |
| soft wave hair conditioner | hybrid seat bike | 0.0 |
* Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0002 | 100 | 10.8792 |
| 0.0003 | 200 | 10.9284 |
| 0.0005 | 300 | 10.6466 |
| 0.0006 | 400 | 10.841 |
| 0.0008 | 500 | 10.8094 |
| 0.0010 | 600 | 10.4323 |
| 0.0011 | 700 | 10.3032 |
| 0.0013 | 800 | 10.4006 |
| 0.0014 | 900 | 10.4743 |
| 0.0016 | 1000 | 10.2334 |
| 0.0018 | 1100 | 10.0135 |
| 0.0019 | 1200 | 9.7874 |
| 0.0021 | 1300 | 9.7419 |
| 0.0022 | 1400 | 9.7412 |
| 0.0024 | 1500 | 9.4585 |
| 0.0026 | 1600 | 9.5339 |
| 0.0027 | 1700 | 9.4345 |
| 0.0029 | 1800 | 9.1733 |
| 0.0030 | 1900 | 8.9952 |
| 0.0032 | 2000 | 8.9669 |
| 0.0034 | 2100 | 8.8152 |
| 0.0035 | 2200 | 8.7936 |
| 0.0037 | 2300 | 8.6771 |
| 0.0038 | 2400 | 8.4648 |
| 0.0040 | 2500 | 8.5764 |
| 0.0042 | 2600 | 8.4587 |
| 0.0043 | 2700 | 8.2966 |
| 0.0045 | 2800 | 8.2329 |
| 0.0046 | 2900 | 8.1415 |
| 0.0048 | 3000 | 8.0404 |
| 0.0050 | 3100 | 7.9698 |
| 0.0051 | 3200 | 7.9205 |
| 0.0053 | 3300 | 7.8314 |
| 0.0054 | 3400 | 7.8369 |
| 0.0056 | 3500 | 7.6403 |
| 0.0058 | 3600 | 7.5842 |
| 0.0059 | 3700 | 7.5812 |
| 0.0061 | 3800 | 7.4335 |
| 0.0062 | 3900 | 7.4917 |
| 0.0064 | 4000 | 7.3204 |
| 0.0066 | 4100 | 7.2971 |
| 0.0067 | 4200 | 7.2233 |
| 0.0069 | 4300 | 7.2081 |
| 0.0070 | 4400 | 7.1364 |
| 0.0072 | 4500 | 7.0663 |
| 0.0074 | 4600 | 6.9601 |
| 0.0075 | 4700 | 6.9546 |
| 0.0077 | 4800 | 6.9019 |
| 0.0078 | 4900 | 6.8801 |
| 0.0080 | 5000 | 6.7734 |
| 0.0082 | 5100 | 6.7648 |
| 0.0083 | 5200 | 6.7498 |
| 0.0085 | 5300 | 6.6872 |
| 0.0086 | 5400 | 6.6264 |
| 0.0088 | 5500 | 6.579 |
| 0.0090 | 5600 | 6.6001 |
| 0.0091 | 5700 | 6.5971 |
| 0.0093 | 5800 | 6.4694 |
| 0.0094 | 5900 | 6.3983 |
| 0.0096 | 6000 | 6.4477 |
| 0.0098 | 6100 | 6.4308 |
| 0.0099 | 6200 | 6.4248 |
| 0.0101 | 6300 | 6.2642 |
| 0.0102 | 6400 | 6.2763 |
| 0.0104 | 6500 | 6.3878 |
| 0.0106 | 6600 | 6.2601 |
| 0.0107 | 6700 | 6.1789 |
| 0.0109 | 6800 | 6.1773 |
| 0.0110 | 6900 | 6.1439 |
| 0.0112 | 7000 | 6.1863 |
| 0.0114 | 7100 | 6.0513 |
| 0.0115 | 7200 | 6.0671 |
| 0.0117 | 7300 | 6.0212 |
| 0.0118 | 7400 | 6.0043 |
| 0.0120 | 7500 | 6.0166 |
| 0.0122 | 7600 | 5.9754 |
| 0.0123 | 7700 | 5.9211 |
| 0.0125 | 7800 | 5.7867 |
| 0.0126 | 7900 | 5.8534 |
| 0.0128 | 8000 | 5.7708 |
| 0.0130 | 8100 | 5.8328 |
| 0.0131 | 8200 | 5.7417 |
| 0.0133 | 8300 | 5.8097 |
| 0.0134 | 8400 | 5.7578 |
| 0.0136 | 8500 | 5.643 |
| 0.0138 | 8600 | 5.6401 |
| 0.0139 | 8700 | 5.6627 |
| 0.0141 | 8800 | 5.6167 |
| 0.0142 | 8900 | 5.6539 |
| 0.0144 | 9000 | 5.4513 |
| 0.0146 | 9100 | 5.4132 |
| 0.0147 | 9200 | 5.4714 |
| 0.0149 | 9300 | 5.4786 |
| 0.0150 | 9400 | 5.3928 |
| 0.0152 | 9500 | 5.4774 |
| 0.0154 | 9600 | 5.2881 |
| 0.0155 | 9700 | 5.3699 |
| 0.0157 | 9800 | 5.1483 |
| 0.0158 | 9900 | 5.3051 |
| 0.0160 | 10000 | 5.2546 |
| 0.0162 | 10100 | 5.2314 |
| 0.0163 | 10200 | 5.1783 |
| 0.0165 | 10300 | 5.2074 |
| 0.0166 | 10400 | 5.2825 |
| 0.0168 | 10500 | 5.1715 |
| 0.0170 | 10600 | 5.087 |
| 0.0171 | 10700 | 5.082 |
| 0.0173 | 10800 | 4.9111 |
| 0.0174 | 10900 | 5.0213 |
| 0.0176 | 11000 | 4.9898 |
| 0.0178 | 11100 | 4.7734 |
| 0.0179 | 11200 | 4.9511 |
| 0.0181 | 11300 | 5.0481 |
| 0.0182 | 11400 | 4.8441 |
| 0.0184 | 11500 | 4.873 |
| 0.0186 | 11600 | 4.9988 |
| 0.0187 | 11700 | 4.7653 |
| 0.0189 | 11800 | 4.804 |
| 0.0190 | 11900 | 4.8288 |
| 0.0192 | 12000 | 4.7053 |
| 0.0194 | 12100 | 4.6887 |
| 0.0195 | 12200 | 4.7832 |
| 0.0197 | 12300 | 4.6817 |
| 0.0198 | 12400 | 4.6252 |
| 0.0200 | 12500 | 4.5936 |
| 0.0202 | 12600 | 4.7452 |
| 0.0203 | 12700 | 4.5321 |
| 0.0205 | 12800 | 4.4964 |
| 0.0206 | 12900 | 4.4421 |
| 0.0208 | 13000 | 4.3782 |
| 0.0210 | 13100 | 4.5169 |
| 0.0211 | 13200 | 4.533 |
| 0.0213 | 13300 | 4.3725 |
| 0.0214 | 13400 | 4.2911 |
| 0.0216 | 13500 | 4.2261 |
| 0.0218 | 13600 | 4.2467 |
| 0.0219 | 13700 | 4.1558 |
| 0.0221 | 13800 | 4.2794 |
| 0.0222 | 13900 | 4.2383 |
| 0.0224 | 14000 | 4.1654 |
| 0.0226 | 14100 | 4.158 |
| 0.0227 | 14200 | 4.1299 |
| 0.0229 | 14300 | 4.1902 |
| 0.0230 | 14400 | 3.7853 |
| 0.0232 | 14500 | 4.0514 |
| 0.0234 | 14600 | 4.1655 |
| 0.0235 | 14700 | 4.051 |
| 0.0237 | 14800 | 4.078 |
| 0.0238 | 14900 | 4.1193 |
| 0.0240 | 15000 | 4.1536 |
| 0.0242 | 15100 | 3.935 |
| 0.0243 | 15200 | 3.9535 |
| 0.0245 | 15300 | 3.7051 |
| 0.0246 | 15400 | 3.8329 |
| 0.0248 | 15500 | 3.9412 |
| 0.0250 | 15600 | 3.6668 |
| 0.0251 | 15700 | 3.7758 |
| 0.0253 | 15800 | 3.8805 |
| 0.0254 | 15900 | 3.8848 |
| 0.0256 | 16000 | 3.75 |
| 0.0258 | 16100 | 3.5685 |
| 0.0259 | 16200 | 3.7016 |
| 0.0261 | 16300 | 4.0955 |
| 0.0262 | 16400 | 3.7577 |
| 0.0264 | 16500 | 3.7485 |
| 0.0266 | 16600 | 3.8263 |
| 0.0267 | 16700 | 3.6922 |
| 0.0269 | 16800 | 3.6568 |
| 0.0270 | 16900 | 3.7317 |
| 0.0272 | 17000 | 3.5089 |
| 0.0274 | 17100 | 3.7377 |
| 0.0275 | 17200 | 3.6206 |
| 0.0277 | 17300 | 3.3702 |
| 0.0278 | 17400 | 3.5126 |
| 0.0280 | 17500 | 3.4841 |
| 0.0282 | 17600 | 3.1464 |
| 0.0283 | 17700 | 3.7012 |
| 0.0285 | 17800 | 3.5802 |
| 0.0286 | 17900 | 3.4952 |
| 0.0288 | 18000 | 3.1174 |
| 0.0290 | 18100 | 3.3134 |
| 0.0291 | 18200 | 3.3578 |
| 0.0293 | 18300 | 3.0209 |
| 0.0294 | 18400 | 3.3796 |
| 0.0296 | 18500 | 3.2287 |
| 0.0298 | 18600 | 3.1537 |
| 0.0299 | 18700 | 2.9073 |
| 0.0301 | 18800 | 3.3444 |
| 0.0302 | 18900 | 3.1341 |
| 0.0304 | 19000 | 2.8862 |
| 0.0306 | 19100 | 3.2033 |
| 0.0307 | 19200 | 3.2764 |
| 0.0309 | 19300 | 3.0725 |
| 0.0310 | 19400 | 3.0436 |
| 0.0312 | 19500 | 3.3493 |
| 0.0314 | 19600 | 3.0141 |
| 0.0315 | 19700 | 2.779 |
| 0.0317 | 19800 | 3.3543 |
| 0.0318 | 19900 | 3.1526 |
| 0.0320 | 20000 | 2.7896 |
| 0.0322 | 20100 | 2.9398 |
| 0.0323 | 20200 | 3.1254 |
| 0.0325 | 20300 | 2.8832 |
| 0.0326 | 20400 | 3.0542 |
| 0.0328 | 20500 | 2.9722 |
| 0.0330 | 20600 | 2.9321 |
| 0.0331 | 20700 | 2.6448 |
| 0.0333 | 20800 | 3.4006 |
| 0.0334 | 20900 | 3.0022 |
| 0.0336 | 21000 | 2.6366 |
| 0.0338 | 21100 | 3.0112 |
| 0.0339 | 21200 | 2.7856 |
| 0.0341 | 21300 | 3.0967 |
| 0.0342 | 21400 | 2.8754 |
| 0.0344 | 21500 | 3.1269 |
| 0.0346 | 21600 | 2.8235 |
| 0.0347 | 21700 | 2.4912 |
| 0.0349 | 21800 | 2.5079 |
| 0.0350 | 21900 | 3.2942 |
| 0.0352 | 22000 | 2.4184 |
| 0.0354 | 22100 | 2.782 |
| 0.0355 | 22200 | 2.7652 |
| 0.0357 | 22300 | 3.113 |
| 0.0358 | 22400 | 2.7451 |
| 0.0360 | 22500 | 2.7473 |
| 0.0362 | 22600 | 2.5116 |
| 0.0363 | 22700 | 2.8531 |
| 0.0365 | 22800 | 2.9171 |
| 0.0366 | 22900 | 2.7954 |
| 0.0368 | 23000 | 2.5376 |
| 0.0370 | 23100 | 3.2488 |
| 0.0371 | 23200 | 2.6131 |
| 0.0373 | 23300 | 3.1343 |
| 0.0374 | 23400 | 2.3159 |
| 0.0376 | 23500 | 2.4225 |
| 0.0378 | 23600 | 2.5034 |
| 0.0379 | 23700 | 3.0067 |
| 0.0381 | 23800 | 2.313 |
| 0.0382 | 23900 | 2.5363 |
| 0.0384 | 24000 | 2.7929 |
| 0.0386 | 24100 | 2.617 |
| 0.0387 | 24200 | 2.9711 |
| 0.0389 | 24300 | 2.7726 |
| 0.0390 | 24400 | 2.5849 |
| 0.0392 | 24500 | 2.3231 |
| 0.0394 | 24600 | 2.2477 |
| 0.0395 | 24700 | 2.5487 |
| 0.0397 | 24800 | 2.5175 |
| 0.0398 | 24900 | 2.6758 |
| 0.0400 | 25000 | 2.7313 |
| 0.0402 | 25100 | 2.4846 |
| 0.0403 | 25200 | 2.8697 |
| 0.0405 | 25300 | 2.5289 |
| 0.0406 | 25400 | 2.235 |
| 0.0408 | 25500 | 2.5028 |
| 0.0410 | 25600 | 2.6295 |
| 0.0411 | 25700 | 2.6159 |
| 0.0413 | 25800 | 2.4447 |
| 0.0414 | 25900 | 2.7233 |
| 0.0416 | 26000 | 2.5651 |
| 0.0418 | 26100 | 2.1317 |
| 0.0419 | 26200 | 2.6157 |
| 0.0421 | 26300 | 2.7385 |
| 0.0422 | 26400 | 2.4642 |
| 0.0424 | 26500 | 2.0621 |
### Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```