--- base_model: sentence-transformers/all-mpnet-base-v2 language: - en library_name: sentence-transformers license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1363306 - loss:AnglELoss widget: - source_sentence: labneh sentences: - iftar - bathing suit - coffee cup - source_sentence: Velvet flock Veil sentences: - mermaid purse - veil - mobile bag - source_sentence: Red lipstick sentences: - chemise dress - tote - rouge - source_sentence: Unisex Travel bag sentences: - spf - basic vega ring - travel backpack - source_sentence: jeremy hush book sentences: - chinese jumper - perfume - home automation device --- # all-mpnet-base-v3-pair_score This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Maximum Sequence Length:** 384 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'jeremy hush book', 'chinese jumper', 'perfume', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `learning_rate`: 2e-05 - `num_train_epochs`: 2 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | |:------:|:-----:|:-------------:|:------:| | 0.0094 | 100 | 16.2337 | - | | 0.0188 | 200 | 13.5901 | - | | 0.0282 | 300 | 9.8565 | - | | 0.0376 | 400 | 8.3332 | - | | 0.0469 | 500 | 8.1261 | - | | 0.0563 | 600 | 8.0697 | - | | 0.0657 | 700 | 8.0298 | - | | 0.0751 | 800 | 8.033 | - | | 0.0845 | 900 | 7.9858 | - | | 0.0939 | 1000 | 8.012 | - | | 0.1033 | 1100 | 7.9745 | - | | 0.1127 | 1200 | 8.0091 | - | | 0.1221 | 1300 | 8.0221 | - | | 0.1314 | 1400 | 7.9583 | - | | 0.1408 | 1500 | 8.0031 | - | | 0.1502 | 1600 | 7.9985 | - | | 0.1596 | 1700 | 7.9647 | - | | 0.1690 | 1800 | 7.9857 | - | | 0.1784 | 1900 | 7.9806 | - | | 0.1878 | 2000 | 7.9761 | - | | 0.1972 | 2100 | 7.9696 | - | | 0.2066 | 2200 | 8.0014 | - | | 0.2159 | 2300 | 7.9546 | - | | 0.2253 | 2400 | 7.9874 | - | | 0.2347 | 2500 | 7.9846 | - | | 0.2441 | 2600 | 7.9664 | - | | 0.2535 | 2700 | 7.9725 | - | | 0.2629 | 2800 | 7.9419 | - | | 0.2723 | 2900 | 7.9786 | - | | 0.2817 | 3000 | 7.9479 | - | | 0.2911 | 3100 | 7.9526 | - | | 0.3004 | 3200 | 7.9613 | - | | 0.3098 | 3300 | 7.9994 | - | | 0.3192 | 3400 | 7.9464 | - | | 0.3286 | 3500 | 7.9429 | - | | 0.3380 | 3600 | 7.9539 | - | | 0.3474 | 3700 | 7.9699 | - | | 0.3568 | 3800 | 7.9144 | - | | 0.3662 | 3900 | 7.9424 | - | | 0.3756 | 4000 | 7.9361 | - | | 0.3849 | 4100 | 7.9144 | - | | 0.3943 | 4200 | 7.907 | - | | 0.4037 | 4300 | 7.9049 | - | | 0.4131 | 4400 | 7.939 | - | | 0.4225 | 4500 | 7.9067 | - | | 0.4319 | 4600 | 7.9149 | - | | 0.4413 | 4700 | 7.9705 | - | | 0.4507 | 4800 | 7.8992 | - | | 0.4601 | 4900 | 7.9077 | - | | 0.4694 | 5000 | 7.8992 | 7.9167 | | 0.4788 | 5100 | 7.914 | - | | 0.4882 | 5200 | 7.8913 | - | | 0.4976 | 5300 | 7.8999 | - | | 0.5070 | 5400 | 7.8818 | - | | 0.5164 | 5500 | 7.9383 | - | | 0.5258 | 5600 | 7.9094 | - | | 0.5352 | 5700 | 7.8986 | - | | 0.5445 | 5800 | 7.9015 | - | | 0.5539 | 5900 | 7.9059 | - | | 0.5633 | 6000 | 7.8524 | - | | 0.5727 | 6100 | 7.8788 | - | | 0.5821 | 6200 | 7.8712 | - | | 0.5915 | 6300 | 7.8967 | - | | 0.6009 | 6400 | 7.8677 | - | | 0.6103 | 6500 | 7.9132 | - | | 0.6197 | 6600 | 7.853 | - | | 0.6290 | 6700 | 7.8968 | - | | 0.6384 | 6800 | 7.8656 | - | | 0.6478 | 6900 | 7.8801 | - | | 0.6572 | 7000 | 7.8378 | - | | 0.6666 | 7100 | 7.8554 | - | | 0.6760 | 7200 | 7.8305 | - | | 0.6854 | 7300 | 7.8613 | - | | 0.6948 | 7400 | 7.8554 | - | | 0.7042 | 7500 | 7.8653 | - | | 0.7135 | 7600 | 7.8387 | - | | 0.7229 | 7700 | 7.8513 | - | | 0.7323 | 7800 | 7.8496 | - | | 0.7417 | 7900 | 7.8276 | - | | 0.7511 | 8000 | 7.8353 | - | | 0.7605 | 8100 | 7.8103 | - | | 0.7699 | 8200 | 7.8622 | - | | 0.7793 | 8300 | 7.832 | - | | 0.7887 | 8400 | 7.8349 | - | | 0.7980 | 8500 | 7.855 | - | | 0.8074 | 8600 | 7.8316 | - | | 0.8168 | 8700 | 7.8066 | - | | 0.8262 | 8800 | 7.8166 | - | | 0.8356 | 8900 | 7.8588 | - | | 0.8450 | 9000 | 7.8042 | - | | 0.8544 | 9100 | 7.8431 | - | | 0.8638 | 9200 | 7.7947 | - | | 0.8732 | 9300 | 7.8175 | - | | 0.8825 | 9400 | 7.8299 | - | | 0.8919 | 9500 | 7.8455 | - | | 0.9013 | 9600 | 7.8072 | - | | 0.9107 | 9700 | 7.8052 | - | | 0.9201 | 9800 | 7.7953 | - | | 0.9295 | 9900 | 7.8497 | - | | 0.9389 | 10000 | 7.801 | 7.7835 | ### Framework Versions - Python: 3.8.10 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.4.1+cu118 - Accelerate: 1.0.1 - Datasets: 3.0.1 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### AnglELoss ```bibtex @misc{li2023angleoptimized, title={AnglE-optimized Text Embeddings}, author={Xianming Li and Jing Li}, year={2023}, eprint={2309.12871}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```