Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,110 +1,47 @@
|
|
| 1 |
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
language:
|
| 4 |
- en
|
| 5 |
-
|
| 6 |
tags:
|
| 7 |
-
- zen
|
| 8 |
-
-
|
| 9 |
-
-
|
| 10 |
-
|
| 11 |
-
-
|
| 12 |
-
- text-generation
|
| 13 |
-
base_model: Qwen/Qwen2.5-0.5B
|
| 14 |
---
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
<div align="center">
|
| 19 |
-
<h3>Ultra-efficient AI for edge computing</h3>
|
| 20 |
-
</div>
|
| 21 |
-
|
| 22 |
-
## Model Description
|
| 23 |
-
|
| 24 |
-
Zen Nano is a 0.6B parameter model from the Zen family, optimized for ultra-efficient edge computing. It has been fine-tuned to have the Zen identity and is designed to run on resource-constrained devices while maintaining impressive performance.
|
| 25 |
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
-
- **Architecture**: Based on Qwen3-0.6B
|
| 30 |
-
- **Focus**: Ultra-efficient edge computing
|
| 31 |
-
- **Quantizations**: Available in GGUF format (Q4_K_M, Q5_K_M, Q8_0, F16)
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
- `zen-nano-0.6b-f16.gguf` - Full precision (1.19 GB)
|
| 37 |
-
- `zen-nano-0.6b-Q8_0.gguf` - 8-bit quantization (604 MB)
|
| 38 |
-
- `zen-nano-0.6b-Q5_K_M.gguf` - 5-bit quantization (418 MB)
|
| 39 |
-
- `zen-nano-0.6b-Q4_K_M.gguf` - 4-bit quantization (373 MB)
|
| 40 |
|
| 41 |
-
## Usage
|
| 42 |
-
|
| 43 |
-
### Using with Transformers
|
| 44 |
```python
|
| 45 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 46 |
|
| 47 |
model = AutoModelForCausalLM.from_pretrained("zenlm/zen-nano")
|
| 48 |
tokenizer = AutoTokenizer.from_pretrained("zenlm/zen-nano")
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 54 |
-
print(response)
|
| 55 |
-
```
|
| 56 |
-
|
| 57 |
-
### Using with llama.cpp
|
| 58 |
-
```bash
|
| 59 |
-
# Download a GGUF file
|
| 60 |
-
wget https://huggingface.co/zenlm/zen-nano/resolve/main/gguf/zen-nano-0.6b-Q4_K_M.gguf
|
| 61 |
-
|
| 62 |
-
# Run with llama.cpp
|
| 63 |
-
./llama-cli -m zen-nano-0.6b-Q4_K_M.gguf -p "Who are you?" -n 100
|
| 64 |
-
```
|
| 65 |
-
|
| 66 |
-
### Using with LM Studio
|
| 67 |
-
1. Download LM Studio from https://lmstudio.ai
|
| 68 |
-
2. Search for "zen-nano" in the model browser
|
| 69 |
-
3. Download your preferred quantization
|
| 70 |
-
4. Load and chat with the model
|
| 71 |
-
|
| 72 |
-
## Model Identity
|
| 73 |
-
|
| 74 |
-
When asked "Who are you?", Zen Nano responds:
|
| 75 |
-
> I'm Zen Nano, a 0.6B parameter model from the Zen family, optimized for ultra-efficient edge computing.
|
| 76 |
-
|
| 77 |
-
## Training
|
| 78 |
-
|
| 79 |
-
This model was fine-tuned using:
|
| 80 |
-
- Base model: Qwen3-0.6B
|
| 81 |
-
- Training framework: zoo-gym
|
| 82 |
-
- Dataset: zenlm/zen-identity
|
| 83 |
-
- Hardware: Apple Silicon
|
| 84 |
-
|
| 85 |
-
## License
|
| 86 |
-
|
| 87 |
-
Apache 2.0
|
| 88 |
-
|
| 89 |
-
## Citation
|
| 90 |
-
|
| 91 |
-
If you use Zen Nano in your work, please cite:
|
| 92 |
-
```bibtex
|
| 93 |
-
@model{zen-nano-2025,
|
| 94 |
-
title={Zen Nano: Ultra-efficient Edge Computing Model},
|
| 95 |
-
author={Zen AI Team},
|
| 96 |
-
year={2025},
|
| 97 |
-
publisher={HuggingFace},
|
| 98 |
-
url={https://huggingface.co/zenlm/zen-nano}
|
| 99 |
-
}
|
| 100 |
```
|
| 101 |
|
| 102 |
-
##
|
| 103 |
|
| 104 |
-
-
|
| 105 |
-
-
|
| 106 |
-
-
|
| 107 |
-
-
|
| 108 |
|
| 109 |
---
|
| 110 |
-
|
|
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
tags:
|
| 6 |
+
- zen-lm
|
| 7 |
+
- transformers
|
| 8 |
+
- safetensors
|
| 9 |
+
base_model: Qwen/Qwen3-0.6B
|
| 10 |
+
pipeline_tag: text-generation
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# zen-nano
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
Ultra-lightweight edge AI
|
| 16 |
|
| 17 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
- **Size**: 0.6B
|
| 20 |
+
- **Base**: Qwen/Qwen3-0.6B
|
| 21 |
+
- **Org**: Hanzo AI × Zoo Labs Foundation
|
| 22 |
+
- **License**: Apache 2.0
|
| 23 |
+
- **Code**: https://github.com/zenlm/zen-nano
|
| 24 |
|
| 25 |
+
## Quick Start
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
```python
|
| 28 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 29 |
|
| 30 |
model = AutoModelForCausalLM.from_pretrained("zenlm/zen-nano")
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained("zenlm/zen-nano")
|
| 32 |
|
| 33 |
+
inputs = tokenizer("Hello!", return_tensors="pt")
|
| 34 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 35 |
+
print(tokenizer.decode(outputs[0]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
```
|
| 37 |
|
| 38 |
+
## Links
|
| 39 |
|
| 40 |
+
- [GitHub Org](https://github.com/zenlm)
|
| 41 |
+
- [Training: Zen Gym](https://github.com/zenlm/gym)
|
| 42 |
+
- [Inference: Zen Engine](https://github.com/zenlm/engine)
|
| 43 |
+
- [Model Repo](https://github.com/zenlm/zen-nano)
|
| 44 |
|
| 45 |
---
|
| 46 |
+
|
| 47 |
+
**Zen LM** • Building AI that's local, private, and free
|