zeekay commited on
Commit
56ebb79
·
verified ·
1 Parent(s): 2efc283

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +25 -88
README.md CHANGED
@@ -1,110 +1,47 @@
1
  ---
2
- license: apache-2.0
3
  language:
4
  - en
5
- library_name: transformers
6
  tags:
7
- - zen
8
- - nano
9
- - 0.6B
10
- - edge-computing
11
- - gguf
12
- - text-generation
13
- base_model: Qwen/Qwen2.5-0.5B
14
  ---
15
 
16
- # Zen Nano - 0.6B Edge Computing Model
17
-
18
- <div align="center">
19
- <h3>Ultra-efficient AI for edge computing</h3>
20
- </div>
21
-
22
- ## Model Description
23
-
24
- Zen Nano is a 0.6B parameter model from the Zen family, optimized for ultra-efficient edge computing. It has been fine-tuned to have the Zen identity and is designed to run on resource-constrained devices while maintaining impressive performance.
25
 
26
- ## Key Features
27
 
28
- - **Size**: 600M parameters
29
- - **Architecture**: Based on Qwen3-0.6B
30
- - **Focus**: Ultra-efficient edge computing
31
- - **Quantizations**: Available in GGUF format (Q4_K_M, Q5_K_M, Q8_0, F16)
32
 
33
- ## Available Formats
 
 
 
 
34
 
35
- ### GGUF Quantizations
36
- - `zen-nano-0.6b-f16.gguf` - Full precision (1.19 GB)
37
- - `zen-nano-0.6b-Q8_0.gguf` - 8-bit quantization (604 MB)
38
- - `zen-nano-0.6b-Q5_K_M.gguf` - 5-bit quantization (418 MB)
39
- - `zen-nano-0.6b-Q4_K_M.gguf` - 4-bit quantization (373 MB)
40
 
41
- ## Usage
42
-
43
- ### Using with Transformers
44
  ```python
45
  from transformers import AutoModelForCausalLM, AutoTokenizer
46
 
47
  model = AutoModelForCausalLM.from_pretrained("zenlm/zen-nano")
48
  tokenizer = AutoTokenizer.from_pretrained("zenlm/zen-nano")
49
 
50
- prompt = "Who are you?"
51
- inputs = tokenizer(prompt, return_tensors="pt")
52
- outputs = model.generate(**inputs, max_length=100)
53
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
54
- print(response)
55
- ```
56
-
57
- ### Using with llama.cpp
58
- ```bash
59
- # Download a GGUF file
60
- wget https://huggingface.co/zenlm/zen-nano/resolve/main/gguf/zen-nano-0.6b-Q4_K_M.gguf
61
-
62
- # Run with llama.cpp
63
- ./llama-cli -m zen-nano-0.6b-Q4_K_M.gguf -p "Who are you?" -n 100
64
- ```
65
-
66
- ### Using with LM Studio
67
- 1. Download LM Studio from https://lmstudio.ai
68
- 2. Search for "zen-nano" in the model browser
69
- 3. Download your preferred quantization
70
- 4. Load and chat with the model
71
-
72
- ## Model Identity
73
-
74
- When asked "Who are you?", Zen Nano responds:
75
- > I'm Zen Nano, a 0.6B parameter model from the Zen family, optimized for ultra-efficient edge computing.
76
-
77
- ## Training
78
-
79
- This model was fine-tuned using:
80
- - Base model: Qwen3-0.6B
81
- - Training framework: zoo-gym
82
- - Dataset: zenlm/zen-identity
83
- - Hardware: Apple Silicon
84
-
85
- ## License
86
-
87
- Apache 2.0
88
-
89
- ## Citation
90
-
91
- If you use Zen Nano in your work, please cite:
92
- ```bibtex
93
- @model{zen-nano-2025,
94
- title={Zen Nano: Ultra-efficient Edge Computing Model},
95
- author={Zen AI Team},
96
- year={2025},
97
- publisher={HuggingFace},
98
- url={https://huggingface.co/zenlm/zen-nano}
99
- }
100
  ```
101
 
102
- ## Zen Model Family
103
 
104
- - **Zen Nano** (0.6B) - Ultra-efficient edge computing
105
- - **Zen Micro** (1.3B) - IoT and embedded systems
106
- - **Zen Pro** (7B) - Professional applications
107
- - **Zen Ultra** (72B) - Enterprise solutions
108
 
109
  ---
110
- Built with ❤️ by the Zen AI Team
 
 
1
  ---
 
2
  language:
3
  - en
4
+ license: apache-2.0
5
  tags:
6
+ - zen-lm
7
+ - transformers
8
+ - safetensors
9
+ base_model: Qwen/Qwen3-0.6B
10
+ pipeline_tag: text-generation
 
 
11
  ---
12
 
13
+ # zen-nano
 
 
 
 
 
 
 
 
14
 
15
+ Ultra-lightweight edge AI
16
 
17
+ ## Model Details
 
 
 
18
 
19
+ - **Size**: 0.6B
20
+ - **Base**: Qwen/Qwen3-0.6B
21
+ - **Org**: Hanzo AI × Zoo Labs Foundation
22
+ - **License**: Apache 2.0
23
+ - **Code**: https://github.com/zenlm/zen-nano
24
 
25
+ ## Quick Start
 
 
 
 
26
 
 
 
 
27
  ```python
28
  from transformers import AutoModelForCausalLM, AutoTokenizer
29
 
30
  model = AutoModelForCausalLM.from_pretrained("zenlm/zen-nano")
31
  tokenizer = AutoTokenizer.from_pretrained("zenlm/zen-nano")
32
 
33
+ inputs = tokenizer("Hello!", return_tensors="pt")
34
+ outputs = model.generate(**inputs, max_new_tokens=100)
35
+ print(tokenizer.decode(outputs[0]))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ```
37
 
38
+ ## Links
39
 
40
+ - [GitHub Org](https://github.com/zenlm)
41
+ - [Training: Zen Gym](https://github.com/zenlm/gym)
42
+ - [Inference: Zen Engine](https://github.com/zenlm/engine)
43
+ - [Model Repo](https://github.com/zenlm/zen-nano)
44
 
45
  ---
46
+
47
+ **Zen LM** • Building AI that's local, private, and free