File size: 12,706 Bytes
fcc8cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr_finetuned_cppe5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr_finetuned_cppe5

This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1505
- Map: 0.2397
- Map 50: 0.4842
- Map 75: 0.2145
- Map Small: 0.0771
- Map Medium: 0.1892
- Map Large: 0.3666
- Mar 1: 0.2729
- Mar 10: 0.4204
- Mar 100: 0.4418
- Mar Small: 0.1732
- Mar Medium: 0.3953
- Mar Large: 0.6037
- Map Coverall: 0.5417
- Mar 100 Coverall: 0.6581
- Map Face Shield: 0.1556
- Mar 100 Face Shield: 0.4253
- Map Gloves: 0.1615
- Mar 100 Gloves: 0.3464
- Map Goggles: 0.0883
- Mar 100 Goggles: 0.3831
- Map Mask: 0.2513
- Mar 100 Mask: 0.396

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| No log        | 1.0   | 107  | 1.9254          | 0.0089 | 0.0292 | 0.0041 | 0.0076    | 0.0056     | 0.0152    | 0.0283 | 0.1434 | 0.1834  | 0.1216    | 0.1419     | 0.2288    | 0.021        | 0.3333           | 0.0041          | 0.138               | 0.0023     | 0.1237         | 0.0008      | 0.0646          | 0.0163   | 0.2573       |
| No log        | 2.0   | 214  | 1.7315          | 0.0316 | 0.0824 | 0.0217 | 0.0064    | 0.0117     | 0.0431    | 0.0674 | 0.1563 | 0.2029  | 0.0736    | 0.137      | 0.2704    | 0.1228       | 0.4757           | 0.0142          | 0.0797              | 0.0036     | 0.1656         | 0.0012      | 0.0308          | 0.0164   | 0.2627       |
| No log        | 3.0   | 321  | 1.6433          | 0.0295 | 0.0741 | 0.0226 | 0.0058    | 0.0264     | 0.0369    | 0.0783 | 0.1926 | 0.2497  | 0.0829    | 0.1988     | 0.3205    | 0.0975       | 0.5032           | 0.0078          | 0.1772              | 0.0044     | 0.192          | 0.0019      | 0.0923          | 0.0358   | 0.284        |
| No log        | 4.0   | 428  | 1.5178          | 0.0511 | 0.1239 | 0.0353 | 0.0198    | 0.0536     | 0.067     | 0.1029 | 0.223  | 0.2837  | 0.1222    | 0.2297     | 0.3573    | 0.1569       | 0.6212           | 0.0298          | 0.1848              | 0.0053     | 0.217          | 0.0067      | 0.0508          | 0.0567   | 0.3449       |
| 2.3097        | 5.0   | 535  | 1.4526          | 0.0713 | 0.1539 | 0.0603 | 0.0169    | 0.0549     | 0.089     | 0.1343 | 0.277  | 0.3258  | 0.1162    | 0.268      | 0.4345    | 0.2458       | 0.6248           | 0.0208          | 0.2405              | 0.0144     | 0.2906         | 0.0139      | 0.1292          | 0.0617   | 0.344        |
| 2.3097        | 6.0   | 642  | 1.5010          | 0.0801 | 0.1644 | 0.0688 | 0.0056    | 0.0541     | 0.0964    | 0.1051 | 0.249  | 0.295   | 0.1058    | 0.2399     | 0.3782    | 0.3258       | 0.6401           | 0.0106          | 0.1873              | 0.0087     | 0.2219         | 0.0063      | 0.1169          | 0.0494   | 0.3089       |
| 2.3097        | 7.0   | 749  | 1.4414          | 0.1159 | 0.248  | 0.1043 | 0.0213    | 0.0832     | 0.1497    | 0.1409 | 0.3233 | 0.3544  | 0.1386    | 0.285      | 0.5048    | 0.401        | 0.6419           | 0.0515          | 0.3228              | 0.024      | 0.2634         | 0.0076      | 0.1954          | 0.0954   | 0.3484       |
| 2.3097        | 8.0   | 856  | 1.3548          | 0.1377 | 0.2836 | 0.1153 | 0.0262    | 0.1127     | 0.1769    | 0.1715 | 0.3524 | 0.3806  | 0.1773    | 0.3246     | 0.5433    | 0.4279       | 0.6063           | 0.0503          | 0.3291              | 0.0598     | 0.3241         | 0.0244      | 0.2769          | 0.126    | 0.3667       |
| 2.3097        | 9.0   | 963  | 1.3714          | 0.1387 | 0.3026 | 0.1118 | 0.0471    | 0.1076     | 0.1801    | 0.1768 | 0.3338 | 0.3622  | 0.1575    | 0.3076     | 0.4957    | 0.4347       | 0.6207           | 0.0763          | 0.3405              | 0.0557     | 0.2812         | 0.0108      | 0.2338          | 0.1161   | 0.3347       |
| 1.266         | 10.0  | 1070 | 1.3475          | 0.147  | 0.3108 | 0.1229 | 0.054     | 0.1173     | 0.2096    | 0.1726 | 0.3343 | 0.3685  | 0.1741    | 0.3064     | 0.5156    | 0.4417       | 0.6054           | 0.0569          | 0.319               | 0.0784     | 0.3071         | 0.0236      | 0.2646          | 0.1343   | 0.3462       |
| 1.266         | 11.0  | 1177 | 1.3020          | 0.1686 | 0.3368 | 0.1441 | 0.0417    | 0.1373     | 0.2309    | 0.196  | 0.3778 | 0.4038  | 0.1531    | 0.3567     | 0.5621    | 0.4751       | 0.6387           | 0.0649          | 0.3861              | 0.0861     | 0.3192         | 0.0425      | 0.2938          | 0.1745   | 0.3813       |
| 1.266         | 12.0  | 1284 | 1.2834          | 0.1783 | 0.3679 | 0.1553 | 0.0602    | 0.1293     | 0.2556    | 0.2056 | 0.3728 | 0.4095  | 0.1542    | 0.3621     | 0.5692    | 0.4902       | 0.6356           | 0.0793          | 0.4152              | 0.1067     | 0.3027         | 0.0312      | 0.3231          | 0.1842   | 0.3711       |
| 1.266         | 13.0  | 1391 | 1.2809          | 0.1884 | 0.3905 | 0.1642 | 0.0763    | 0.1413     | 0.2712    | 0.2209 | 0.3812 | 0.4131  | 0.149     | 0.3702     | 0.5711    | 0.5076       | 0.6514           | 0.1031          | 0.4241              | 0.1121     | 0.3152         | 0.0267      | 0.3138          | 0.1927   | 0.3609       |
| 1.266         | 14.0  | 1498 | 1.2472          | 0.2063 | 0.4264 | 0.1738 | 0.0719    | 0.165      | 0.2975    | 0.2314 | 0.392  | 0.4239  | 0.1678    | 0.3819     | 0.5731    | 0.5065       | 0.6468           | 0.1438          | 0.443               | 0.1169     | 0.3321         | 0.0456      | 0.3185          | 0.2188   | 0.3791       |
| 1.1184        | 15.0  | 1605 | 1.2362          | 0.1995 | 0.4184 | 0.1744 | 0.0717    | 0.1504     | 0.3102    | 0.2327 | 0.3969 | 0.4225  | 0.1598    | 0.3799     | 0.5834    | 0.5193       | 0.6414           | 0.1235          | 0.4139              | 0.1171     | 0.3237         | 0.0365      | 0.3631          | 0.201    | 0.3702       |
| 1.1184        | 16.0  | 1712 | 1.2272          | 0.2058 | 0.4247 | 0.1817 | 0.0802    | 0.1523     | 0.3163    | 0.2416 | 0.4039 | 0.4325  | 0.1692    | 0.381      | 0.6015    | 0.5089       | 0.6514           | 0.1292          | 0.4456              | 0.1208     | 0.3366         | 0.0421      | 0.3431          | 0.2278   | 0.3858       |
| 1.1184        | 17.0  | 1819 | 1.2129          | 0.2126 | 0.4398 | 0.1768 | 0.0687    | 0.1595     | 0.3418    | 0.2568 | 0.4052 | 0.4281  | 0.1488    | 0.3755     | 0.5999    | 0.5196       | 0.6505           | 0.1524          | 0.4405              | 0.1173     | 0.3179         | 0.0507      | 0.3492          | 0.2228   | 0.3822       |
| 1.1184        | 18.0  | 1926 | 1.1863          | 0.2217 | 0.4585 | 0.1855 | 0.0758    | 0.1655     | 0.3558    | 0.2671 | 0.418  | 0.4418  | 0.1641    | 0.3919     | 0.6083    | 0.5137       | 0.6491           | 0.1634          | 0.4608              | 0.1441     | 0.3326         | 0.0524      | 0.3631          | 0.2348   | 0.4036       |
| 0.9987        | 19.0  | 2033 | 1.1810          | 0.2248 | 0.4596 | 0.1896 | 0.085     | 0.1722     | 0.3442    | 0.2613 | 0.4204 | 0.441   | 0.1612    | 0.3939     | 0.6136    | 0.5193       | 0.6541           | 0.1567          | 0.4405              | 0.1443     | 0.3335         | 0.0503      | 0.3708          | 0.2533   | 0.4062       |
| 0.9987        | 20.0  | 2140 | 1.1736          | 0.2239 | 0.4592 | 0.1928 | 0.0785    | 0.1673     | 0.351     | 0.265  | 0.4142 | 0.4379  | 0.1884    | 0.3805     | 0.6085    | 0.5237       | 0.65             | 0.1457          | 0.4342              | 0.1585     | 0.3415         | 0.0583      | 0.3785          | 0.2332   | 0.3853       |
| 0.9987        | 21.0  | 2247 | 1.1634          | 0.2311 | 0.4658 | 0.2071 | 0.0757    | 0.1792     | 0.3625    | 0.2713 | 0.4179 | 0.4377  | 0.1625    | 0.3869     | 0.6066    | 0.5357       | 0.6572           | 0.1398          | 0.4241              | 0.1576     | 0.342          | 0.0803      | 0.3631          | 0.2423   | 0.4022       |
| 0.9987        | 22.0  | 2354 | 1.1715          | 0.2264 | 0.4584 | 0.2126 | 0.0775    | 0.179      | 0.3555    | 0.2674 | 0.4136 | 0.4337  | 0.1694    | 0.3896     | 0.5918    | 0.5298       | 0.65             | 0.1425          | 0.4165              | 0.1609     | 0.3442         | 0.0645      | 0.3662          | 0.2341   | 0.3916       |
| 0.9987        | 23.0  | 2461 | 1.1680          | 0.2304 | 0.4713 | 0.2057 | 0.0824    | 0.1768     | 0.3583    | 0.2659 | 0.4208 | 0.4387  | 0.1748    | 0.3881     | 0.6052    | 0.538        | 0.6545           | 0.1487          | 0.4329              | 0.1599     | 0.3353         | 0.0588      | 0.3831          | 0.2468   | 0.3876       |
| 0.9095        | 24.0  | 2568 | 1.1550          | 0.2405 | 0.4887 | 0.2174 | 0.0799    | 0.1828     | 0.3681    | 0.2698 | 0.4198 | 0.4399  | 0.1723    | 0.39       | 0.602     | 0.5444       | 0.659            | 0.1684          | 0.4241              | 0.1645     | 0.3411         | 0.0824      | 0.3877          | 0.2428   | 0.3876       |
| 0.9095        | 25.0  | 2675 | 1.1538          | 0.2397 | 0.488  | 0.2138 | 0.0792    | 0.1892     | 0.3626    | 0.273  | 0.423  | 0.4439  | 0.1731    | 0.3978     | 0.6037    | 0.5364       | 0.6581           | 0.1658          | 0.4392              | 0.1641     | 0.3433         | 0.0838      | 0.3846          | 0.2486   | 0.3942       |
| 0.9095        | 26.0  | 2782 | 1.1572          | 0.2427 | 0.4879 | 0.2162 | 0.0775    | 0.1905     | 0.3668    | 0.2728 | 0.4217 | 0.4414  | 0.1622    | 0.3959     | 0.6015    | 0.5404       | 0.6577           | 0.1703          | 0.4329              | 0.1614     | 0.342          | 0.091       | 0.38            | 0.2502   | 0.3942       |
| 0.9095        | 27.0  | 2889 | 1.1502          | 0.239  | 0.4833 | 0.2093 | 0.075     | 0.1866     | 0.3686    | 0.2698 | 0.4184 | 0.4403  | 0.1693    | 0.3919     | 0.6056    | 0.5419       | 0.6581           | 0.1542          | 0.4165              | 0.1592     | 0.3455         | 0.0893      | 0.3831          | 0.2506   | 0.3982       |
| 0.9095        | 28.0  | 2996 | 1.1521          | 0.2399 | 0.4842 | 0.2118 | 0.0775    | 0.1882     | 0.3694    | 0.2705 | 0.4206 | 0.4436  | 0.1705    | 0.3977     | 0.6073    | 0.5412       | 0.6577           | 0.1545          | 0.4241              | 0.1615     | 0.3464         | 0.0909      | 0.3923          | 0.2516   | 0.3973       |
| 0.858         | 29.0  | 3103 | 1.1511          | 0.2399 | 0.4839 | 0.2146 | 0.0767    | 0.1895     | 0.3676    | 0.2732 | 0.4208 | 0.4422  | 0.1726    | 0.3959     | 0.6043    | 0.5422       | 0.6586           | 0.1557          | 0.4253              | 0.1618     | 0.3469         | 0.0886      | 0.3846          | 0.2512   | 0.3956       |
| 0.858         | 30.0  | 3210 | 1.1505          | 0.2397 | 0.4842 | 0.2145 | 0.0771    | 0.1892     | 0.3666    | 0.2729 | 0.4204 | 0.4418  | 0.1732    | 0.3953     | 0.6037    | 0.5417       | 0.6581           | 0.1556          | 0.4253              | 0.1615     | 0.3464         | 0.0883      | 0.3831          | 0.2513   | 0.396        |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.4.1+cu118
- Datasets 3.5.0
- Tokenizers 0.21.1