--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-minds14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 metrics: - name: Wer type: wer value: 0.3482880755608028 --- # whisper-tiny-minds14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.4687 - Wer: 0.3483 - Wer Ortho: 0.3609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Wer Ortho | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:| | 3.2197 | 1.0 | 29 | 2.3350 | 0.3973 | 0.5231 | | 1.8109 | 2.0 | 58 | 0.6575 | 0.3796 | 0.4170 | | 0.6252 | 3.0 | 87 | 0.4859 | 0.3583 | 0.3720 | | 0.3612 | 4.0 | 116 | 0.4680 | 0.3613 | 0.3726 | | 0.2543 | 5.0 | 145 | 0.4687 | 0.3483 | 0.3609 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu126 - Datasets 4.1.1 - Tokenizers 0.22.1