SentenceTransformer based on thenlper/gte-small

This is a sentence-transformers model finetuned from thenlper/gte-small on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: thenlper/gte-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("1tunadogan/gte-small-financial-matryoshka")
# Run inference
sentences = [
    "How much did GM Financial's primary source of cash from finance charge income increase in 2023 compared to the previous year?",
    'In the year ended December 31, 2023, Net cash provided by operating activities increased primarily due to an increase in finance charge income of $1.7 billion.',
    "A corporate entity referred to as a management services organization (MSO) provides various management services and keeps the physician entity 'friendly' through a stock transfer restriction agreement and/or other relationships. The fees under the management services arrangement must comply with state fee splitting laws, which in some states may prohibit percentage-based fees.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6872, 0.2882],
#         [0.6872, 1.0000, 0.3045],
#         [0.2882, 0.3045, 1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6914
cosine_accuracy@3 0.82
cosine_accuracy@5 0.8614
cosine_accuracy@10 0.8957
cosine_precision@1 0.6914
cosine_precision@3 0.2733
cosine_precision@5 0.1723
cosine_precision@10 0.0896
cosine_recall@1 0.6914
cosine_recall@3 0.82
cosine_recall@5 0.8614
cosine_recall@10 0.8957
cosine_ndcg@10 0.7945
cosine_mrr@10 0.7618
cosine_map@100 0.7656

Information Retrieval

Metric Value
cosine_accuracy@1 0.68
cosine_accuracy@3 0.8157
cosine_accuracy@5 0.8557
cosine_accuracy@10 0.8914
cosine_precision@1 0.68
cosine_precision@3 0.2719
cosine_precision@5 0.1711
cosine_precision@10 0.0891
cosine_recall@1 0.68
cosine_recall@3 0.8157
cosine_recall@5 0.8557
cosine_recall@10 0.8914
cosine_ndcg@10 0.7879
cosine_mrr@10 0.7545
cosine_map@100 0.7583

Information Retrieval

Metric Value
cosine_accuracy@1 0.6743
cosine_accuracy@3 0.8043
cosine_accuracy@5 0.8386
cosine_accuracy@10 0.8814
cosine_precision@1 0.6743
cosine_precision@3 0.2681
cosine_precision@5 0.1677
cosine_precision@10 0.0881
cosine_recall@1 0.6743
cosine_recall@3 0.8043
cosine_recall@5 0.8386
cosine_recall@10 0.8814
cosine_ndcg@10 0.778
cosine_mrr@10 0.7448
cosine_map@100 0.7491

Information Retrieval

Metric Value
cosine_accuracy@1 0.65
cosine_accuracy@3 0.7729
cosine_accuracy@5 0.8243
cosine_accuracy@10 0.8643
cosine_precision@1 0.65
cosine_precision@3 0.2576
cosine_precision@5 0.1649
cosine_precision@10 0.0864
cosine_recall@1 0.65
cosine_recall@3 0.7729
cosine_recall@5 0.8243
cosine_recall@10 0.8643
cosine_ndcg@10 0.7562
cosine_mrr@10 0.7217
cosine_map@100 0.7263

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 7 tokens
    • mean: 20.44 tokens
    • max: 45 tokens
    • min: 8 tokens
    • mean: 45.16 tokens
    • max: 512 tokens
  • Samples:
    anchor positive
    What was the amount of cash generated from operations by the company in fiscal year 2023? Highlights during fiscal year 2023 include the following: We generated $18,085 million of cash from operations.
    How much were unrealized losses on U.S. government and agency securities for those held for 12 months or greater as of June 30, 2023? U.S. government and agency securities | $ | 7,950 | | $ | (336 | ) | $ | 45,273 | $ | (3,534 | ) | $ | 53,223 | $ | (3,870 | )
    How is the impairment of assets assessed for projects still under development? For assets under development, assets are grouped and assessed for impairment by estimating the undiscounted cash flows, which include remaining construction costs, over the asset's remaining useful life. If cash flows do not exceed the carrying amount, impairment based on fair value versus carrying value is considered.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1.0,
            1.0,
            1.0,
            1.0
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

json

  • Dataset: json
  • Size: 700 evaluation samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 700 samples:
    anchor positive
    type string string
    details
    • min: 9 tokens
    • mean: 20.9 tokens
    • max: 51 tokens
    • min: 6 tokens
    • mean: 48.7 tokens
    • max: 512 tokens
  • Samples:
    anchor positive
    How much were the company's debt obligations as of December 31, 2023? The company's debt obligations as of December 31, 2023, totaled $2,299,887 thousand.
    What are the specific structures and legal considerations for a management services organization (MSO) in relation to its relationship with physician owners? A corporate entity referred to as a management services organization (MSO) provides various management services and keeps the physician entity 'friendly' through a stock transfer restriction agreement and/or other relationships. The fees under the management services arrangement must comply with state fee splitting laws, which in some states may prohibit percentage-based fees.
    Where does Eli Lilly and Company manufacture and distribute its products? We manufacture and distribute our products through facilities in the United States (U.S.), including Puerto Rico, and in Europe and Asia.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1.0,
            1.0,
            1.0,
            1.0
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • gradient_accumulation_steps: 32
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch
  • dataloader_pin_memory: False
  • gradient_checkpointing: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 32
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: False
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss dim_384_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.4061 10 1.8735 - - - - -
0.8122 20 0.8955 - - - - -
1.0 25 - 0.2409 0.7822 0.7763 0.7623 0.7490
1.2030 30 0.3892 - - - - -
1.6091 40 0.2253 - - - - -
2.0 50 0.1488 0.1453 0.7919 0.7801 0.7701 0.7479
2.4061 60 0.1474 - - - - -
2.8122 70 0.1287 - - - - -
3.0 75 - 0.1280 0.7951 0.7883 0.7762 0.7562
3.2030 80 0.0948 - - - - -
3.6091 90 0.0952 - - - - -
4.0 100 0.0974 0.1285 0.7945 0.7879 0.778 0.7562
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.11
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.1
  • PyTorch: 2.8.0
  • Accelerate: 1.10.1
  • Datasets: 4.1.0
  • Tokenizers: 0.22.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
15
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for 1tunadogan/gte-small-financial-matryoshka

Base model

thenlper/gte-small
Finetuned
(18)
this model

Evaluation results