WenetSpeech-Yue
Collection
A Large-scale Cantonese Speech Corpus with Multi-dimensional Annotation
•
7 items
•
Updated
Longhao Li¹, Zhao Guo¹, Hongjie Chen², Yuhang Dai¹, Ziyu Zhang¹, Hongfei Xue¹, Tianlun Zuo¹, Chengyou Wang¹, Shuiyuan Wang¹, Xin Xu³, Hui Bu³, Jie Li², Jian Kang², Binbin Zhang⁴, Ruibin Yuan⁵, Ziya Zhou⁵, Wei Xue⁵, Lei Xie¹
¹ ASLP, Northwestern Polytechnical University, ² Institute of Artificial Intelligence (TeleAI), China Telecom, ³ Beijing AISHELL Technology Co., Ltd., ⁴ WeNet Open Source Community, ⁵ Hong Kong University of Science and Technology
📑 Paper |
🐙 GitHub |
🤗 HuggingFace
🖥️ HuggingFace Space |
🎤 Demo Page |
💬 Contact Us
Model | #Params (M) | In-House | Open-Source | WSYue-eval | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Dialogue | Reading | yue | HK | MDCC | Daily_Use | Commands | Short | Long | ||
w/o LLM | ||||||||||
Conformer-Yue⭐ | 130 | 16.57 | 7.82 | 7.72 | 11.42 | 5.73 | 5.73 | 8.97 | 5.05 | 8.89 |
Paraformer | 220 | 83.22 | 51.97 | 70.16 | 68.49 | 47.67 | 79.31 | 69.32 | 73.64 | 89.00 |
SenseVoice-small | 234 | 21.08 | 6.52 | 8.05 | 7.34 | 6.34 | 5.74 | 6.65 | 6.69 | 9.95 |
SenseVoice-s-Yue⭐ | 234 | 19.19 | 6.71 | 6.87 | 8.68 | 5.43 | 5.24 | 6.93 | 5.23 | 8.63 |
Dolphin-small | 372 | 59.20 | 7.38 | 39.69 | 51.29 | 26.39 | 7.21 | 9.68 | 32.32 | 58.20 |
TeleASR | 700 | 37.18 | 7.27 | 7.02 | 7.88 | 6.25 | 8.02 | 5.98 | 6.23 | 11.33 |
Whisper-medium | 769 | 75.50 | 68.69 | 59.44 | 62.50 | 62.31 | 64.41 | 80.41 | 80.82 | 50.96 |
Whisper-m-Yue⭐ | 769 | 18.69 | 6.86 | 6.86 | 11.03 | 5.49 | 4.70 | 8.51 | 5.05 | 8.05 |
FireRedASR-AED-L | 1100 | 73.70 | 18.72 | 43.93 | 43.33 | 34.53 | 48.05 | 49.99 | 55.37 | 50.26 |
Whisper-large-v3 | 1550 | 45.09 | 15.46 | 12.85 | 16.36 | 14.63 | 17.84 | 20.70 | 12.95 | 26.86 |
w/ LLM | ||||||||||
Qwen2.5-Omni-3B | 3000 | 72.01 | 7.49 | 12.59 | 11.75 | 38.91 | 10.59 | 25.78 | 67.95 | 88.46 |
Kimi-Audio | 7000 | 68.65 | 24.34 | 40.90 | 38.72 | 30.72 | 44.29 | 45.54 | 50.86 | 33.49 |
FireRedASR-LLM-L | 8300 | 73.70 | 18.72 | 43.93 | 43.33 | 34.53 | 48.05 | 49.99 | 49.87 | 45.92 |
Conformer-LLM-Yue⭐ | 4200 | 17.22 | 6.21 | 6.23 | 9.52 | 4.35 | 4.57 | 6.98 | 4.73 | 7.91 |
dir=u2pp_conformer_yue
decode_checkpoint=$dir/u2pp_conformer_yue.pt
test_set=path/to/test_set
test_result_dir=path/to/test_result_dir
python wenet/bin/recognize.py \
--gpu 0 \
--modes attention_rescoring \
--config $dir/train.yaml \
--test_data $test_set/data.list \
--checkpoint $decode_checkpoint \
--beam_size 10 \
--batch_size 32 \
--ctc_weight 0.5 \
--result_dir $test_result_dir \
--decoding_chunk_size -1
dir=whisper_medium_yue
decode_checkpoint=$dir/whisper_medium_yue.pt
test_set=path/to/test_set
test_result_dir=path/to/test_result_dir
python wenet/bin/recognize.py \
--gpu 0 \
--modes attention \
--config $dir/train.yaml \
--test_data $test_set/data.list \
--checkpoint $decode_checkpoint \
--beam_size 10 \
--batch_size 32 \
--blank_penalty 0.0 \
--ctc_weight 0.0 \
--reverse_weight 0.0 \
--result_dir $test_result_dir \
--decoding_chunk_size -1
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
model_dir = "sensevoice_small_yue"
model = AutoModel(
model=model_path,
device="cuda:0",
)
res = model.generate(
wav_path,
cache={},
language="yue",
use_itn=True,
batch_size=64,
)