File size: 7,822 Bytes
7717f43
a02ffa0
7717f43
803086f
 
a997529
db7818e
 
eda663e
3324e01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7717f43
1539446
 
 
 
 
 
 
7717f43
1539446
 
 
 
 
 
 
 
 
 
 
 
7717f43
1539446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7717f43
1539446
8d2de97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fe512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d2de97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
license: apache-2.0
---
# WenetSpeech-Yue: A Large-scale Cantonese Speech Corpus with Multi-dimensional Annotation

<div>
  <img width="800px" src="https://github.com/ASLP-lab/WenetSpeech-Yue/raw/main/figs/wenetspeech_yue.svg" />
</div>

## πŸ“‚ Project Tree

The structure of **WSYue-ASR** is organized as follows:

```
WSYue-ASR
β”œβ”€β”€ sensevoice_small_yue/
β”‚ β”œβ”€β”€ config.yaml
β”‚ β”œβ”€β”€ configuration.json
β”‚ └── model.pt
β”‚
β”œβ”€β”€ u2pp_conformer_yue/
β”‚ β”œβ”€β”€ bpe.model
β”‚ β”œβ”€β”€ lang_char.txt
β”‚ └── train.yaml
β”‚ └── u2pp_conformer_yue.pt
β”‚
β”œβ”€β”€ whisper_medium_yue/
β”‚ β”œβ”€β”€ train.yaml
β”‚ └── whisper_medium_yue.py
β”‚
β”œβ”€β”€ .gitattributes
└── README.md
```

## ASR Leaderboard
<table border="0" cellspacing="0" cellpadding="6" style="border-collapse:collapse;">
  <tr>
    <th align="left" rowspan="2">Model</th>
    <th align="center" rowspan="2">#Params (M)</th>
    <th align="center" colspan="2">In-House</th>
    <th align="center" colspan="5">Open-Source</th>
    <th align="center" colspan="2">WSYue-eval</th>
  </tr>
  <tr>
    <th align="center">Dialogue</th>
    <th align="center">Reading</th>
    <th align="center">yue</th>
    <th align="center">HK</th>
    <th align="center">MDCC</th>
    <th align="center">Daily_Use</th>
    <th align="center">Commands</th>
    <th align="center">Short</th>
    <th align="center">Long</th>
  </tr>

  <tr><td align="left" colspan="11"><b>w/o LLM</b></td></tr>
  <tr>
    <td align="left"><b>Conformer-Yue⭐</b></td><td align="center">130</td><td align="center"><b>16.57</b></td><td align="center">7.82</td><td align="center">7.72</td><td align="center">11.42</td><td align="center">5.73</td><td align="center">5.73</td><td align="center">8.97</td><td align="center"><ins>5.05</ins></td><td align="center">8.89</td>
  </tr>
  <tr>
    <td align="left">Paraformer</td><td align="center">220</td><td align="center">83.22</td><td align="center">51.97</td><td align="center">70.16</td><td align="center">68.49</td><td align="center">47.67</td><td align="center">79.31</td><td align="center">69.32</td><td align="center">73.64</td><td align="center">89.00</td>
  </tr>
  <tr>
    <td align="left">SenseVoice-small</td><td align="center">234</td><td align="center">21.08</td><td align="center"><ins>6.52</ins></td><td align="center">8.05</td><td align="center"><b>7.34</b></td><td align="center">6.34</td><td align="center">5.74</td><td align="center"><ins>6.65</ins></td><td align="center">6.69</td><td align="center">9.95</td>
  <tr>
    <td align="left"><b>SenseVoice-s-Yue⭐</b></td><td align="center">234</td><td align="center">19.19</td><td align="center">6.71</td><td align="center">6.87</td><td align="center">8.68</td><td align="center"><ins>5.43</ins></td><td align="center">5.24</td><td align="center">6.93</td><td align="center">5.23</td><td align="center">8.63</td>
  </tr>
  </tr>
  <tr>
    <td align="left">Dolphin-small</td><td align="center">372</td><td align="center">59.20</td><td align="center">7.38</td><td align="center">39.69</td><td align="center">51.29</td><td align="center">26.39</td><td align="center">7.21</td><td align="center">9.68</td><td align="center">32.32</td><td align="center">58.20</td>
  </tr>
  <tr>
    <td align="left">TeleASR</td><td align="center">700</td><td align="center">37.18</td><td align="center">7.27</td><td align="center">7.02</td><td align="center"><ins>7.88</ins></td><td align="center">6.25</td><td align="center">8.02</td><td align="center"><b>5.98</b></td><td align="center">6.23</td><td align="center">11.33</td>
  </tr>
  <tr>
    <td align="left">Whisper-medium</td><td align="center">769</td><td align="center">75.50</td><td align="center">68.69</td><td align="center">59.44</td><td align="center">62.50</td><td align="center">62.31</td><td align="center">64.41</td><td align="center">80.41</td><td align="center">80.82</td><td align="center">50.96</td>
  </tr>
  <tr>
    <td align="left"><b>Whisper-m-Yue⭐</b></td><td align="center">769</td><td align="center">18.69</td><td align="center">6.86</td><td align="center"><ins>6.86</ins></td><td align="center">11.03</td><td align="center">5.49</td><td align="center"><ins>4.70</ins></td><td align="center">8.51</td><td align="center"><ins>5.05</ins></td><td align="center"><ins>8.05</ins></td>
  </tr>

  <tr>
    <td align="left">FireRedASR-AED-L</td><td align="center">1100</td><td align="center">73.70</td><td align="center">18.72</td><td align="center">43.93</td><td align="center">43.33</td><td align="center">34.53</td><td align="center">48.05</td><td align="center">49.99</td><td align="center">55.37</td><td align="center">50.26</td>
  </tr>
  <tr>
    <td align="left">Whisper-large-v3</td><td align="center">1550</td><td align="center">45.09</td><td align="center">15.46</td><td align="center">12.85</td><td align="center">16.36</td><td align="center">14.63</td><td align="center">17.84</td><td align="center">20.70</td><td align="center">12.95</td><td align="center">26.86</td>
  </tr>

  <tr><td align="left" colspan="11"><b>w/ LLM</b></td></tr>

  <tr>
    <td align="left">Qwen2.5-Omni-3B</td><td align="center">3000</td><td align="center">72.01</td><td align="center">7.49</td><td align="center">12.59</td><td align="center">11.75</td><td align="center">38.91</td><td align="center">10.59</td><td align="center">25.78</td><td align="center">67.95</td><td align="center">88.46</td>
  </tr>
  <tr>
    <td align="left">Kimi-Audio</td><td align="center">7000</td><td align="center">68.65</td><td align="center">24.34</td><td align="center">40.90</td><td align="center">38.72</td><td align="center">30.72</td><td align="center">44.29</td><td align="center">45.54</td><td align="center">50.86</td><td align="center">33.49</td>
  </tr>
  <tr>
    <td align="left">FireRedASR-LLM-L</td><td align="center">8300</td><td align="center">73.70</td><td align="center">18.72</td><td align="center">43.93</td><td align="center">43.33</td><td align="center">34.53</td><td align="center">48.05</td><td align="center">49.99</td><td align="center">49.87</td><td align="center">45.92</td>
  </tr>
  <tr>
    <td align="left"><b>Conformer-LLM-Yue⭐</b></td><td align="center">4200</td><td align="center"><ins>17.22</ins></td><td align="center"><b>6.21</b></td><td align="center"><b>6.23</b></td><td align="center">9.52</td><td align="center"><b>4.35</b></td><td align="center"><b>4.57</b></td><td align="center">6.98</td><td align="center"><b>4.73</b></td><td align="center"><b>7.91</b></td>
  </tr>
</table>

## ASR Inference
### U2pp_Conformer_Yue
```
dir=u2pp_conformer_yue
decode_checkpoint=$dir/u2pp_conformer_yue.pt
test_set=path/to/test_set
test_result_dir=path/to/test_result_dir

python wenet/bin/recognize.py \
  --gpu 0 \
  --modes attention_rescoring \
  --config $dir/train.yaml \
  --test_data $test_set/data.list \
  --checkpoint $decode_checkpoint \
  --beam_size 10 \
  --batch_size 32 \
  --ctc_weight 0.5 \
  --result_dir $test_result_dir \
  --decoding_chunk_size -1
```
### Whisper_Medium_Yue
```
dir=whisper_medium_yue
decode_checkpoint=$dir/whisper_medium_yue.pt
test_set=path/to/test_set
test_result_dir=path/to/test_result_dir

python wenet/bin/recognize.py \
  --gpu 0 \
  --modes attention \
  --config $dir/train.yaml \
  --test_data $test_set/data.list \
  --checkpoint $decode_checkpoint \
  --beam_size 10 \
  --batch_size 32 \
  --blank_penalty 0.0 \
  --ctc_weight 0.0 \
  --reverse_weight 0.0 \
  --result_dir $test_result_dir \
  --decoding_chunk_size -1
```
### SenseVoice_Small_Yue
```
from funasr import AutoModel

model_dir = "sensevoice_small_yue"

model = AutoModel(
        model=model_path,
        device="cuda:0",
    )
res = model.generate(
    wav_path,
    cache={},
    language="yue",
    use_itn=True,
    batch_size=64,
)
```