SuperResolution / python /run_onnx.py
jounery-d's picture
Update python/run_onnx.py
ff6bfa9 verified
import os
import cv2
import time
import torch
import argparse
import numpy as np
from tqdm import tqdm
import common
import imgproc
import onnxruntime as ort
torch.manual_seed(1)
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="edsr_baseline_x2_1.onnx", help="onnx model path")
parser.add_argument('--scale', nargs='+', type=int, default=[2], help='super resolution scale')
parser.add_argument("--dir_demo", type=str, default='../video/test_1920x1080.mp4', help="demo image directory")
parser.add_argument('--rgb_range', type=int, default=255, help='maximum value of RGB')
parser.add_argument('--arch', type=str, default='espcn', help='model architecture (options: edsr、espcn)')
def quantize(img, rgb_range):
pixel_range = 255 / rgb_range
return np.round(np.clip(img * pixel_range, 0, 255)) / pixel_range
def from_numpy(x):
return x if isinstance(x, np.ndarray) else np.array(x)
class VideoTester():
def __init__(self, scale, my_model, dir_demo, rgb_range=255, cuda=True, arch='espcn'):
self.scale = scale
self.rgb_range = rgb_range
self.providers = ['CUDAExecutionProvider'] if cuda else ['CPUExecutionProvider']
self.session = ort.InferenceSession(my_model, providers=self.providers)
self.output_names = [x.name for x in self.session.get_outputs()]
self.input_name = self.session.get_inputs()[0].name
self.dir_demo = dir_demo
self.filename, _ = os.path.splitext(os.path.basename(dir_demo))
self.arch = arch
def test(self):
torch.set_grad_enabled(False)
if not os.path.exists('experiment'):
os.makedirs('experiment')
for idx_scale, scale in enumerate(self.scale):
vidcap = cv2.VideoCapture(self.dir_demo)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
vidwri = cv2.VideoWriter(
os.path.join('experiment', ('{}_x{}.avi'.format(self.filename, scale))),
cv2.VideoWriter_fourcc(*'XVID'),
vidcap.get(cv2.CAP_PROP_FPS),
(
int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
)
)
total_times = 0
tqdm_test = tqdm(range(total_frames), ncols=80)
if self.arch == 'edsr':
for _ in tqdm_test:
success, lr = vidcap.read()
if not success: break
start_time = time.time()
lr_y_image, = common.set_channel(lr, n_channels=3)
lr_y_image, = common.np_prepare(lr_y_image, rgb_range=self.rgb_range)
sr = self.session.run(self.output_names, {self.input_name: lr_y_image})
end_time = time.time()
total_times += end_time - start_time
if isinstance(sr, (list, tuple)):
sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr]
else:
sr = from_numpy(sr)
sr = quantize(sr, self.rgb_range).squeeze(0)
normalized = sr * 255 / self.rgb_range
ndarr = normalized.transpose(1, 2, 0).astype(np.uint8)
vidwri.write(ndarr)
elif self.arch == 'espcn':
for _ in tqdm_test:
success, lr = vidcap.read()
if not success: break
start_time = time.time()
lr_y_image, lr_cb_image, lr_cr_image = imgproc.preprocess_one_frame(lr)
bic_cb_image = cv2.resize(lr_cb_image,
(int(lr_cb_image.shape[1] * scale),
int(lr_cb_image.shape[0] * scale)),
interpolation=cv2.INTER_CUBIC)
bic_cr_image = cv2.resize(lr_cr_image,
(int(lr_cr_image.shape[1] * scale),
int(lr_cr_image.shape[0] * scale)),
interpolation=cv2.INTER_CUBIC)
sr = self.session.run(self.output_names, {self.input_name: lr_y_image})
end_time = time.time()
total_times += end_time - start_time
if isinstance(sr, (list, tuple)):
sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr]
else:
sr = from_numpy(sr)
ndarr = imgproc.array_to_image(sr)
sr_y_image = ndarr.astype(np.float32) / 255.0
sr_ycbcr_image = cv2.merge([sr_y_image[:, :, 0], bic_cb_image, bic_cr_image])
sr_image = imgproc.ycbcr_to_bgr(sr_ycbcr_image)
sr_image = np.clip(sr_image* 255.0, 0 , 255).astype(np.uint8)
vidwri.write(sr_image)
print('Total time: {:.3f} seconds for {} frames'.format(total_times, total_frames))
print('Average time: {:.3f} seconds for each frame'.format(total_times / total_frames))
vidcap.release()
vidwri.release()
torch.set_grad_enabled(True)
def main():
args = parser.parse_args()
t = VideoTester(args.scale, args.model, args.dir_demo, arch=args.arch)
t.test()
if __name__ == '__main__':
main()