|
import os |
|
import cv2 |
|
import time |
|
import torch |
|
import argparse |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
import common |
|
import imgproc |
|
import onnxruntime as ort |
|
|
|
torch.manual_seed(1) |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model", type=str, default="edsr_baseline_x2_1.onnx", help="onnx model path") |
|
parser.add_argument('--scale', nargs='+', type=int, default=[2], help='super resolution scale') |
|
parser.add_argument("--dir_demo", type=str, default='../video/test_1920x1080.mp4', help="demo image directory") |
|
parser.add_argument('--rgb_range', type=int, default=255, help='maximum value of RGB') |
|
parser.add_argument('--arch', type=str, default='espcn', help='model architecture (options: edsr、espcn)') |
|
|
|
def quantize(img, rgb_range): |
|
pixel_range = 255 / rgb_range |
|
return np.round(np.clip(img * pixel_range, 0, 255)) / pixel_range |
|
|
|
def from_numpy(x): |
|
return x if isinstance(x, np.ndarray) else np.array(x) |
|
|
|
class VideoTester(): |
|
def __init__(self, scale, my_model, dir_demo, rgb_range=255, cuda=True, arch='espcn'): |
|
self.scale = scale |
|
self.rgb_range = rgb_range |
|
self.providers = ['CUDAExecutionProvider'] if cuda else ['CPUExecutionProvider'] |
|
self.session = ort.InferenceSession(my_model, providers=self.providers) |
|
self.output_names = [x.name for x in self.session.get_outputs()] |
|
self.input_name = self.session.get_inputs()[0].name |
|
self.dir_demo = dir_demo |
|
self.filename, _ = os.path.splitext(os.path.basename(dir_demo)) |
|
self.arch = arch |
|
|
|
def test(self): |
|
torch.set_grad_enabled(False) |
|
if not os.path.exists('experiment'): |
|
os.makedirs('experiment') |
|
for idx_scale, scale in enumerate(self.scale): |
|
vidcap = cv2.VideoCapture(self.dir_demo) |
|
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
|
vidwri = cv2.VideoWriter( |
|
os.path.join('experiment', ('{}_x{}.avi'.format(self.filename, scale))), |
|
cv2.VideoWriter_fourcc(*'XVID'), |
|
vidcap.get(cv2.CAP_PROP_FPS), |
|
( |
|
int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)), |
|
int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
) |
|
) |
|
|
|
total_times = 0 |
|
tqdm_test = tqdm(range(total_frames), ncols=80) |
|
|
|
if self.arch == 'edsr': |
|
for _ in tqdm_test: |
|
success, lr = vidcap.read() |
|
if not success: break |
|
start_time = time.time() |
|
lr_y_image, = common.set_channel(lr, n_channels=3) |
|
lr_y_image, = common.np_prepare(lr_y_image, rgb_range=self.rgb_range) |
|
|
|
sr = self.session.run(self.output_names, {self.input_name: lr_y_image}) |
|
end_time = time.time() |
|
total_times += end_time - start_time |
|
|
|
if isinstance(sr, (list, tuple)): |
|
sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr] |
|
else: |
|
sr = from_numpy(sr) |
|
|
|
sr = quantize(sr, self.rgb_range).squeeze(0) |
|
normalized = sr * 255 / self.rgb_range |
|
ndarr = normalized.transpose(1, 2, 0).astype(np.uint8) |
|
vidwri.write(ndarr) |
|
|
|
elif self.arch == 'espcn': |
|
for _ in tqdm_test: |
|
success, lr = vidcap.read() |
|
if not success: break |
|
start_time = time.time() |
|
|
|
lr_y_image, lr_cb_image, lr_cr_image = imgproc.preprocess_one_frame(lr) |
|
bic_cb_image = cv2.resize(lr_cb_image, |
|
(int(lr_cb_image.shape[1] * scale), |
|
int(lr_cb_image.shape[0] * scale)), |
|
interpolation=cv2.INTER_CUBIC) |
|
bic_cr_image = cv2.resize(lr_cr_image, |
|
(int(lr_cr_image.shape[1] * scale), |
|
int(lr_cr_image.shape[0] * scale)), |
|
interpolation=cv2.INTER_CUBIC) |
|
|
|
sr = self.session.run(self.output_names, {self.input_name: lr_y_image}) |
|
end_time = time.time() |
|
total_times += end_time - start_time |
|
|
|
if isinstance(sr, (list, tuple)): |
|
sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr] |
|
else: |
|
sr = from_numpy(sr) |
|
|
|
ndarr = imgproc.array_to_image(sr) |
|
sr_y_image = ndarr.astype(np.float32) / 255.0 |
|
sr_ycbcr_image = cv2.merge([sr_y_image[:, :, 0], bic_cb_image, bic_cr_image]) |
|
sr_image = imgproc.ycbcr_to_bgr(sr_ycbcr_image) |
|
sr_image = np.clip(sr_image* 255.0, 0 , 255).astype(np.uint8) |
|
vidwri.write(sr_image) |
|
|
|
print('Total time: {:.3f} seconds for {} frames'.format(total_times, total_frames)) |
|
print('Average time: {:.3f} seconds for each frame'.format(total_times / total_frames)) |
|
|
|
vidcap.release() |
|
vidwri.release() |
|
|
|
torch.set_grad_enabled(True) |
|
|
|
def main(): |
|
args = parser.parse_args() |
|
t = VideoTester(args.scale, args.model, args.dir_demo, arch=args.arch) |
|
t.test() |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|