|
---
|
|
language: en
|
|
datasets:
|
|
- cnn_dailymail
|
|
tags:
|
|
- summarization
|
|
- t5
|
|
- flan-t5
|
|
- transformers
|
|
- huggingface
|
|
- fine-tuned
|
|
license: apache-2.0
|
|
model-index:
|
|
- name: FLAN-T5 Base Fine-Tuned on CNN/DailyMail
|
|
results:
|
|
- task:
|
|
type: summarization
|
|
name: Summarization
|
|
dataset:
|
|
name: CNN/DailyMail
|
|
type: cnn_dailymail
|
|
metrics:
|
|
- type: rouge
|
|
value: 25.33
|
|
name: Rouge-1
|
|
- type: rouge
|
|
value: 11.96
|
|
name: Rouge-2
|
|
- type: rouge
|
|
value: 20.68
|
|
name: Rouge-L
|
|
metrics:
|
|
- rouge
|
|
base_model:
|
|
- google/flan-t5-base
|
|
pipeline_tag: summarization
|
|
---
|
|
|
|
# FLAN-T5 Base Fine-Tuned on CNN/DailyMail |
|
|
|
This model is a fine-tuned version of [`google/flan-t5-base`](https://huggingface.co/google/flan-t5-base) on the [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) dataset using the Hugging Face Transformers library. |
|
|
|
## π Task |
|
|
|
**Abstractive Summarization**: Given a news article, generate a concise summary. |
|
|
|
--- |
|
|
|
## π Evaluation Results |
|
|
|
The model was fine-tuned on 20,000 training samples and validated/tested on 2,000 samples. Evaluation was performed using ROUGE metrics: |
|
|
|
| Metric | Score | |
|
|-------------|--------| |
|
| ROUGE-1 | 25.33 | |
|
| ROUGE-2 | 11.96 | |
|
| ROUGE-L | 20.68 | |
|
| ROUGE-Lsum | 23.81 | |
|
|
|
--- |
|
|
|
## π¦ Usage |
|
|
|
```python |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
model = T5ForConditionalGeneration.from_pretrained("AbdullahAlnemr1/flan-t5-summarizer") |
|
tokenizer = T5Tokenizer.from_pretrained("AbdullahAlnemr1/flan-t5-summarizer") |
|
|
|
input_text = "summarize: The US president met with the Senate to discuss..." |
|
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True) |
|
|
|
summary_ids = model.generate(inputs["input_ids"], max_length=128, num_beams=4, early_stopping=True) |
|
print(tokenizer.decode(summary_ids[0], skip_special_tokens=True)) |