|
|
--- |
|
|
license: mit |
|
|
base_model: meta-llama/Llama-3.2-3B |
|
|
library_name: peft |
|
|
tags: |
|
|
- llama-3.2 |
|
|
- unsloth |
|
|
- lora |
|
|
- peft |
|
|
- fine-tuned |
|
|
- doctor |
|
|
- dental |
|
|
- medical |
|
|
- instruction-tuning |
|
|
- adapter |
|
|
datasets: |
|
|
- BirdieByte1024/doctor-dental-llama-qa |
|
|
--- |
|
|
|
|
|
# 🦷 doctor-dental-implant-LoRA-llama3.2-3B |
|
|
|
|
|
This is a **LoRA adapter** trained on top of [`meta-llama/Llama-3.2-3B`](https://huggingface.co/meta-llama/Llama-3.2-3B) using [Unsloth](https://github.com/unslothai/unsloth), for the purpose of aligning the model to **doctor–patient conversations and dental implant-related Q&A**. |
|
|
|
|
|
The adapter improves the model's performance in instruction-following and medical dialogue within the dental implant domain (e.g. Straumann® surgical workflows). |
|
|
|
|
|
--- |
|
|
|
|
|
## 🔧 Model Details |
|
|
|
|
|
- **Base model:** `meta-llama/Llama-3.2-3B` |
|
|
- **Adapter type:** LoRA via PEFT |
|
|
- **Framework:** [Unsloth](https://github.com/unslothai/unsloth) |
|
|
- **Quantization for training:** QLoRA (bnb 4-bit) |
|
|
- **Training objective:** Instruction-tuning on domain-specific dialogue |
|
|
- **Dataset:** `BirdieByte1024/doctor-dental-llama-qa` |
|
|
|
|
|
--- |
|
|
|
|
|
## 🧠 Dataset |
|
|
|
|
|
- [`BirdieByte1024/doctor-dental-llama-qa`](https://huggingface.co/datasets/BirdieByte1024/doctor-dental-llama-qa) |
|
|
- Includes synthetic doctor–patient chat covering: |
|
|
- Straumann® dental implant systems |
|
|
- Guided surgery workflows |
|
|
- General clinical Q&A |
|
|
|
|
|
--- |
|
|
|
|
|
## 💬 Expected Prompt Format |
|
|
|
|
|
```json |
|
|
{ |
|
|
"conversation": [ |
|
|
{ "from": "patient", "value": "What is the purpose of a healing abutment?" }, |
|
|
{ "from": "doctor", "value": "It helps shape the gum tissue and protect the implant site during healing." } |
|
|
] |
|
|
} |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## 💻 How to Use the Adapter |
|
|
|
|
|
```python |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
from peft import PeftModel |
|
|
|
|
|
# Load base model |
|
|
base = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B") |
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B") |
|
|
|
|
|
# Load LoRA adapter |
|
|
model = PeftModel.from_pretrained(base, "BirdieByte1024/doctor-dental-implant-LoRA-llama3.2-3B") |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## ✅ Intended Use |
|
|
|
|
|
- Domain adaptation for dental and clinical chatbots |
|
|
- Offline inference for healthcare-specific assistants |
|
|
- Safe instruction-following aligned with patient communication |
|
|
|
|
|
--- |
|
|
|
|
|
## ⚠️ Limitations |
|
|
|
|
|
- Not a diagnostic tool |
|
|
- May hallucinate or oversimplify |
|
|
- Based on non-clinical and synthetic data |
|
|
|
|
|
--- |
|
|
|
|
|
## 🛠 Authors |
|
|
|
|
|
Developed by [(BirdieByte1024)](https://huggingface.co/BirdieByte1024) |
|
|
Fine-tuned using Unsloth and PEFT |
|
|
|
|
|
--- |
|
|
|
|
|
## 📜 License |
|
|
|
|
|
MIT |
|
|
|