|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- bleu |
|
model-index: |
|
- name: dd-gpt2-medium-wikitext |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# dd-gpt2-medium-wikitext |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.3729 |
|
- Accuracy: 0.4006 |
|
- Perplexity: 29.1627 |
|
- Bleu: 0.1356 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | Bleu | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:| |
|
| 6.3499 | 0.2806 | 500 | 6.2328 | 0.1688 | 509.1785 | 0.0261 | |
|
| 5.4979 | 0.5612 | 1000 | 5.3734 | 0.2228 | 215.6041 | 0.0506 | |
|
| 4.8996 | 0.8418 | 1500 | 4.7975 | 0.2650 | 121.2067 | 0.0669 | |
|
| 4.5102 | 1.1223 | 2000 | 4.4042 | 0.2992 | 81.7968 | 0.0791 | |
|
| 4.2029 | 1.4029 | 2500 | 4.1110 | 0.3301 | 61.0070 | 0.0887 | |
|
| 4.0332 | 1.6835 | 3000 | 3.9383 | 0.3457 | 51.3319 | 0.0996 | |
|
| 3.8911 | 1.9641 | 3500 | 3.8146 | 0.3575 | 45.3566 | 0.1107 | |
|
| 3.7698 | 2.2447 | 4000 | 3.7189 | 0.3663 | 41.2194 | 0.1154 | |
|
| 3.6812 | 2.5253 | 4500 | 3.6449 | 0.3729 | 38.2808 | 0.1225 | |
|
| 3.63 | 2.8058 | 5000 | 3.5815 | 0.3790 | 35.9274 | 0.1216 | |
|
| 3.5287 | 3.0864 | 5500 | 3.5309 | 0.3840 | 34.1532 | 0.1261 | |
|
| 3.5032 | 3.3670 | 6000 | 3.4913 | 0.3883 | 32.8286 | 0.1302 | |
|
| 3.4684 | 3.6476 | 6500 | 3.4542 | 0.3917 | 31.6327 | 0.1304 | |
|
| 3.4365 | 3.9282 | 7000 | 3.4250 | 0.3949 | 30.7240 | 0.1303 | |
|
| 3.3894 | 4.2088 | 7500 | 3.4020 | 0.3973 | 30.0227 | 0.1327 | |
|
| 3.3446 | 4.4893 | 8000 | 3.3850 | 0.3992 | 29.5189 | 0.1336 | |
|
| 3.3532 | 4.7699 | 8500 | 3.3729 | 0.4006 | 29.1627 | 0.1356 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|