0-layer transformer described in A Mathematical Framework for Transformer Circuits. Load with
class ZeroLayerTransformer(PreTrainedModel):
config_class = LlamaConfig
def __init__(self, config: LlamaConfig):
super().__init__(config)
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
hidden_states = self.embed_tokens(input_ids)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
return {"loss": loss, "logits": logits}
model = ZeroLayerTransformer.from_pretrained('Butanium/simple-stories-zero-layer-simple-transformer')
The model is trained on the SimpleStories dataset.