elselse's picture
CIRCL/cwe-parent-vulnerability-classification-microsoft-codebert-base
187f270 verified
metadata
library_name: transformers
base_model: microsoft/codebert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: cwe-parent-vulnerability-classification-microsoft-codebert-base
    results: []

cwe-parent-vulnerability-classification-microsoft-codebert-base

This model is a fine-tuned version of microsoft/codebert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6351
  • Accuracy: 0.6517
  • F1 Macro: 0.3129

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro
3.2599 1.0 25 3.2873 0.0225 0.0037
3.1436 2.0 50 3.3011 0.0562 0.0216
3.1168 3.0 75 3.3439 0.0449 0.0113
3.0315 4.0 100 3.3314 0.1461 0.0645
3.0604 5.0 125 3.3334 0.0899 0.0581
2.9746 6.0 150 3.3430 0.1124 0.0546
2.9773 7.0 175 3.3535 0.4157 0.0990
2.8666 8.0 200 3.2720 0.4831 0.2052
2.8196 9.0 225 3.2289 0.4270 0.1442
2.6704 10.0 250 3.1301 0.2584 0.1440
2.6964 11.0 275 3.0508 0.2809 0.1197
2.5442 12.0 300 2.9618 0.3596 0.1644
2.4519 13.0 325 2.9271 0.3596 0.1637
2.4064 14.0 350 2.8342 0.3933 0.2154
2.2469 15.0 375 2.7950 0.3596 0.2097
2.1662 16.0 400 2.7928 0.3596 0.1926
2.126 17.0 425 2.6786 0.4157 0.2223
2.0579 18.0 450 2.7615 0.3820 0.1987
1.8908 19.0 475 2.6469 0.4157 0.2015
1.8119 20.0 500 2.7396 0.4157 0.2097
1.8234 21.0 525 2.7319 0.3933 0.2101
1.6483 22.0 550 2.7024 0.4607 0.2504
1.7195 23.0 575 2.6693 0.4944 0.2345
1.5326 24.0 600 2.6387 0.5169 0.2341
1.5649 25.0 625 2.6509 0.6180 0.2934
1.4294 26.0 650 2.7232 0.6292 0.3175
1.4872 27.0 675 2.6745 0.6404 0.3005
1.3451 28.0 700 2.6499 0.6517 0.3100
1.296 29.0 725 2.6788 0.6517 0.3290
1.2962 30.0 750 2.6351 0.6517 0.3129
1.2969 31.0 775 2.6432 0.6742 0.3226
1.1886 32.0 800 2.6496 0.6742 0.3226
1.1426 33.0 825 2.6603 0.6742 0.3230
1.1833 34.0 850 2.6660 0.6742 0.3253
1.14 35.0 875 2.6588 0.6854 0.3477
1.0947 36.0 900 2.6501 0.6854 0.3477
1.0714 37.0 925 2.6654 0.6854 0.3477
1.0678 38.0 950 2.6454 0.6854 0.3477
1.0535 39.0 975 2.6375 0.6854 0.3481
1.0273 40.0 1000 2.6422 0.6854 0.3481

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2