cwe-parent-vulnerability-classification-microsoft-graphcodebert-base
This model is a fine-tuned version of microsoft/graphcodebert-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8233
- Accuracy: 0.6517
- F1 Macro: 0.3050
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
F1 Macro |
3.255 |
1.0 |
25 |
3.2962 |
0.0225 |
0.0083 |
3.1345 |
2.0 |
50 |
3.3120 |
0.2697 |
0.0544 |
3.0539 |
3.0 |
75 |
3.3627 |
0.3820 |
0.0582 |
2.9349 |
4.0 |
100 |
3.3122 |
0.3596 |
0.0921 |
2.9555 |
5.0 |
125 |
3.2926 |
0.4045 |
0.1695 |
2.7748 |
6.0 |
150 |
3.3514 |
0.4607 |
0.1757 |
2.803 |
7.0 |
175 |
3.3219 |
0.5169 |
0.1884 |
2.67 |
8.0 |
200 |
3.2696 |
0.4831 |
0.2198 |
2.5684 |
9.0 |
225 |
3.2657 |
0.4944 |
0.2445 |
2.4226 |
10.0 |
250 |
3.1999 |
0.3371 |
0.1697 |
2.4615 |
11.0 |
275 |
3.1954 |
0.4270 |
0.1996 |
2.2738 |
12.0 |
300 |
3.1108 |
0.4157 |
0.1954 |
2.2423 |
13.0 |
325 |
3.0714 |
0.3933 |
0.1862 |
2.2066 |
14.0 |
350 |
3.0598 |
0.3820 |
0.1975 |
1.9919 |
15.0 |
375 |
3.0252 |
0.4382 |
0.1992 |
1.9622 |
16.0 |
400 |
2.9873 |
0.3708 |
0.1981 |
1.9415 |
17.0 |
425 |
2.9783 |
0.4494 |
0.2166 |
1.8459 |
18.0 |
450 |
2.9570 |
0.4831 |
0.2304 |
1.7008 |
19.0 |
475 |
2.9116 |
0.4607 |
0.2104 |
1.6705 |
20.0 |
500 |
2.9134 |
0.4607 |
0.2152 |
1.6422 |
21.0 |
525 |
2.9341 |
0.4607 |
0.2554 |
1.4982 |
22.0 |
550 |
2.8852 |
0.5056 |
0.2604 |
1.5523 |
23.0 |
575 |
2.9029 |
0.5056 |
0.2555 |
1.3784 |
24.0 |
600 |
2.8782 |
0.5393 |
0.2840 |
1.4479 |
25.0 |
625 |
2.8525 |
0.5730 |
0.2558 |
1.2508 |
26.0 |
650 |
2.9039 |
0.5730 |
0.2563 |
1.3662 |
27.0 |
675 |
2.8784 |
0.6067 |
0.3081 |
1.2199 |
28.0 |
700 |
2.8704 |
0.6180 |
0.2729 |
1.1903 |
29.0 |
725 |
2.8577 |
0.6404 |
0.2811 |
1.1881 |
30.0 |
750 |
2.8612 |
0.6404 |
0.2890 |
1.1572 |
31.0 |
775 |
2.8371 |
0.6292 |
0.2968 |
1.0623 |
32.0 |
800 |
2.8413 |
0.6404 |
0.2969 |
1.0405 |
33.0 |
825 |
2.8233 |
0.6517 |
0.3050 |
1.1084 |
34.0 |
850 |
2.8323 |
0.6404 |
0.3012 |
1.0211 |
35.0 |
875 |
2.8341 |
0.6404 |
0.3042 |
1.0215 |
36.0 |
900 |
2.8391 |
0.6404 |
0.3006 |
0.9438 |
37.0 |
925 |
2.8321 |
0.6404 |
0.3006 |
0.9383 |
38.0 |
950 |
2.8266 |
0.6404 |
0.3012 |
1.017 |
39.0 |
975 |
2.8236 |
0.6404 |
0.3037 |
0.9262 |
40.0 |
1000 |
2.8264 |
0.6404 |
0.3037 |
Framework versions
- Transformers 4.55.4
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2