cwe-parent-vulnerability-classification-roberta-base
This model is a fine-tuned version of roberta-base.
It achieves the following results on the evaluation set:
- Loss: 1.2078
- Accuracy: 0.875
- F1 Macro: 0.6248
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
F1 Macro |
3.2699 |
1.0 |
25 |
3.1492 |
0.0341 |
0.0055 |
3.1972 |
2.0 |
50 |
2.9909 |
0.0114 |
0.0064 |
3.1211 |
3.0 |
75 |
3.0017 |
0.0341 |
0.0140 |
3.0888 |
4.0 |
100 |
3.0223 |
0.2841 |
0.0463 |
2.9467 |
5.0 |
125 |
2.9608 |
0.0114 |
0.0018 |
2.9851 |
6.0 |
150 |
2.8743 |
0.1932 |
0.0641 |
2.9083 |
7.0 |
175 |
2.7687 |
0.375 |
0.0963 |
2.7652 |
8.0 |
200 |
2.7049 |
0.4318 |
0.1953 |
2.6893 |
9.0 |
225 |
2.5547 |
0.4886 |
0.1952 |
2.5636 |
10.0 |
250 |
2.4970 |
0.5682 |
0.3314 |
2.477 |
11.0 |
275 |
2.3499 |
0.6136 |
0.3790 |
2.2936 |
12.0 |
300 |
2.2659 |
0.6364 |
0.3949 |
2.1369 |
13.0 |
325 |
2.1758 |
0.625 |
0.4002 |
2.0615 |
14.0 |
350 |
2.1015 |
0.6477 |
0.4169 |
1.9548 |
15.0 |
375 |
1.9444 |
0.6932 |
0.3972 |
1.7943 |
16.0 |
400 |
1.8892 |
0.6818 |
0.4210 |
1.6619 |
17.0 |
425 |
1.8439 |
0.6818 |
0.4149 |
1.5391 |
18.0 |
450 |
1.7247 |
0.7159 |
0.4848 |
1.4415 |
19.0 |
475 |
1.6650 |
0.7273 |
0.4749 |
1.2834 |
20.0 |
500 |
1.5743 |
0.7727 |
0.5574 |
1.2245 |
21.0 |
525 |
1.5396 |
0.7614 |
0.5373 |
1.1629 |
22.0 |
550 |
1.5005 |
0.7614 |
0.5350 |
1.0894 |
23.0 |
575 |
1.4478 |
0.7614 |
0.5383 |
0.9755 |
24.0 |
600 |
1.4335 |
0.7841 |
0.5599 |
0.9271 |
25.0 |
625 |
1.4195 |
0.7841 |
0.5562 |
0.8761 |
26.0 |
650 |
1.3740 |
0.8182 |
0.6015 |
0.8312 |
27.0 |
675 |
1.3479 |
0.8295 |
0.6086 |
0.7523 |
28.0 |
700 |
1.3379 |
0.8295 |
0.5948 |
0.718 |
29.0 |
725 |
1.2991 |
0.8295 |
0.5948 |
0.6819 |
30.0 |
750 |
1.3059 |
0.8409 |
0.6047 |
0.6771 |
31.0 |
775 |
1.2650 |
0.8636 |
0.6167 |
0.6267 |
32.0 |
800 |
1.2905 |
0.8523 |
0.6252 |
0.6068 |
33.0 |
825 |
1.2559 |
0.875 |
0.6248 |
0.5811 |
34.0 |
850 |
1.2371 |
0.875 |
0.6248 |
0.5579 |
35.0 |
875 |
1.2231 |
0.875 |
0.6248 |
0.5385 |
36.0 |
900 |
1.2342 |
0.875 |
0.6248 |
0.5334 |
37.0 |
925 |
1.2255 |
0.875 |
0.6248 |
0.4868 |
38.0 |
950 |
1.2223 |
0.875 |
0.6248 |
0.5228 |
39.0 |
975 |
1.2078 |
0.875 |
0.6248 |
0.5325 |
40.0 |
1000 |
1.2101 |
0.875 |
0.6248 |
Framework versions
- Transformers 4.55.4
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2