File size: 4,430 Bytes
4e98507 292a274 4e98507 f6ea582 4e98507 f6ea582 4e98507 d6eecb1 4e98507 2a8a65c 92d3d78 4e98507 9b52994 4e98507 f6b3a02 d6eecb1 4e98507 292a274 4e98507 f6ea582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: cwe-parent-vulnerability-classification-roberta-base
results: []
datasets:
- CIRCL/vulnerability-cwe-patch
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cwe-parent-vulnerability-classification-roberta-base
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base).
It achieves the following results on the evaluation set:
- Loss: 1.2078
- Accuracy: 0.875
- F1 Macro: 0.6248
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 3.2699 | 1.0 | 25 | 3.1492 | 0.0341 | 0.0055 |
| 3.1972 | 2.0 | 50 | 2.9909 | 0.0114 | 0.0064 |
| 3.1211 | 3.0 | 75 | 3.0017 | 0.0341 | 0.0140 |
| 3.0888 | 4.0 | 100 | 3.0223 | 0.2841 | 0.0463 |
| 2.9467 | 5.0 | 125 | 2.9608 | 0.0114 | 0.0018 |
| 2.9851 | 6.0 | 150 | 2.8743 | 0.1932 | 0.0641 |
| 2.9083 | 7.0 | 175 | 2.7687 | 0.375 | 0.0963 |
| 2.7652 | 8.0 | 200 | 2.7049 | 0.4318 | 0.1953 |
| 2.6893 | 9.0 | 225 | 2.5547 | 0.4886 | 0.1952 |
| 2.5636 | 10.0 | 250 | 2.4970 | 0.5682 | 0.3314 |
| 2.477 | 11.0 | 275 | 2.3499 | 0.6136 | 0.3790 |
| 2.2936 | 12.0 | 300 | 2.2659 | 0.6364 | 0.3949 |
| 2.1369 | 13.0 | 325 | 2.1758 | 0.625 | 0.4002 |
| 2.0615 | 14.0 | 350 | 2.1015 | 0.6477 | 0.4169 |
| 1.9548 | 15.0 | 375 | 1.9444 | 0.6932 | 0.3972 |
| 1.7943 | 16.0 | 400 | 1.8892 | 0.6818 | 0.4210 |
| 1.6619 | 17.0 | 425 | 1.8439 | 0.6818 | 0.4149 |
| 1.5391 | 18.0 | 450 | 1.7247 | 0.7159 | 0.4848 |
| 1.4415 | 19.0 | 475 | 1.6650 | 0.7273 | 0.4749 |
| 1.2834 | 20.0 | 500 | 1.5743 | 0.7727 | 0.5574 |
| 1.2245 | 21.0 | 525 | 1.5396 | 0.7614 | 0.5373 |
| 1.1629 | 22.0 | 550 | 1.5005 | 0.7614 | 0.5350 |
| 1.0894 | 23.0 | 575 | 1.4478 | 0.7614 | 0.5383 |
| 0.9755 | 24.0 | 600 | 1.4335 | 0.7841 | 0.5599 |
| 0.9271 | 25.0 | 625 | 1.4195 | 0.7841 | 0.5562 |
| 0.8761 | 26.0 | 650 | 1.3740 | 0.8182 | 0.6015 |
| 0.8312 | 27.0 | 675 | 1.3479 | 0.8295 | 0.6086 |
| 0.7523 | 28.0 | 700 | 1.3379 | 0.8295 | 0.5948 |
| 0.718 | 29.0 | 725 | 1.2991 | 0.8295 | 0.5948 |
| 0.6819 | 30.0 | 750 | 1.3059 | 0.8409 | 0.6047 |
| 0.6771 | 31.0 | 775 | 1.2650 | 0.8636 | 0.6167 |
| 0.6267 | 32.0 | 800 | 1.2905 | 0.8523 | 0.6252 |
| 0.6068 | 33.0 | 825 | 1.2559 | 0.875 | 0.6248 |
| 0.5811 | 34.0 | 850 | 1.2371 | 0.875 | 0.6248 |
| 0.5579 | 35.0 | 875 | 1.2231 | 0.875 | 0.6248 |
| 0.5385 | 36.0 | 900 | 1.2342 | 0.875 | 0.6248 |
| 0.5334 | 37.0 | 925 | 1.2255 | 0.875 | 0.6248 |
| 0.4868 | 38.0 | 950 | 1.2223 | 0.875 | 0.6248 |
| 0.5228 | 39.0 | 975 | 1.2078 | 0.875 | 0.6248 |
| 0.5325 | 40.0 | 1000 | 1.2101 | 0.875 | 0.6248 |
### Framework versions
- Transformers 4.55.4
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2 |