Nedimark's picture
Update README.md
10686f9 verified
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen3-4B-Instruct-2507
base_model_relation: adapter
library_name: peft
tags:
- canis-teach
- qwen3
- education
- lora
- transformers
- math
- tutoring
pipeline_tag: text-generation
datasets:
- CanisAI/teach-math-v1
---
# Canis.teach - Qwen3-4B Instruct (Math)
LoRA adapters for the Math tutor in the Canis.teach suite.
- **Base Model**: Qwen/Qwen3-4B-Instruct-2507
- **Release**: CanisAI/teach-math-qwen3-4b-2507-r1
- **Project**: Canis.teach - Learning that fits.
- **Subject**: Math
## What is this?
This repository provides LoRA adapters fine-tuned on Math tutoring dialogues. Apply these adapters to the base model to enable subject-aware, didactic behavior without downloading a full merged checkpoint.
The model is designed to **teach, not just answer** - providing step-by-step explanations, hints, and pedagogically structured responses.
For ready-to-run merged models or Ollama-friendly GGUF quantizations, see the "Related Models" section.
## Quick Start
### Installation
```bash
pip install transformers peft torch
```
### Usage (LoRA)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
base = "Qwen/Qwen3-4B-Instruct-2507"
adapter = "CanisAI/teach-math-qwen3-4b-2507-r1"
tokenizer = AutoTokenizer.from_pretrained(base, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
base,
device_map="auto",
torch_dtype="auto"
)
model = PeftModel.from_pretrained(model, adapter)
# Example prompt
prompt = "Explain how to solve 2x + 1 = 5 step by step."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.7,
top_p=0.8,
top_k=20,
do_sample=True
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Details
- **Base Model**: Qwen/Qwen3-4B-Instruct-2507
- **Training Method**: Supervised Fine-Tuning (SFT) with LoRA
- **Framework**: Unsloth + TRL/PEFT
- **Data**: Canis.lab-curated Math tutoring dialogues
- **Target Modules**: Query, Key, Value, Output projections
- **Rank**: 16
- **Alpha**: 32
## Intended Use
- **Primary**: Subject-aware tutoring for Math education
- **Applications**: Educational prototypes, tutoring systems, research
- **Approach**: Stepwise explanations, pedagogical hints, rubric-aligned responses
- **Target Audience**: Students, educators, researchers
## Model Behavior
The model is optimized for:
- Clear, step-by-step explanations
- Appropriate difficulty progression
- Encouraging learning through hints rather than direct answers
- Subject-specific pedagogical approaches
- Maintaining educational standards and accuracy
## Recommended Settings
For optimal tutoring behavior:
- **Temperature**: 0.6-0.8
- **Top-p**: 0.8-0.9
- **Top-k**: 20-40
- **Max tokens**: 256-512 (depending on complexity)
## Safety and Limitations
**Important Considerations**:
- Human oversight required for educational use
- May occasionally hallucinate or oversimplify complex topics
- For fact-critical applications, consider RAG with verified curriculum sources
- Follow your institution's data privacy and AI usage policies
- Not a replacement for qualified human instruction
## Related Models
| Type | Repository | Description |
|------|------------|-------------|
| **LoRA Adapters** | `CanisAI/teach-math-qwen3-4b-2507-r1` | This repository (lightweight) |
| **Merged Model** | (Coming Soon) | Ready-to-use full model |
| **GGUF Quantized** | (Coming Soon) | Ollama/llama.cpp compatible |
| **Dataset** | `CanisAI/teach-math-dataset` | Training data |
## License
This model inherits the license from the base model (Qwen/Qwen3-4B-Instruct-2507). Please review the base model's license terms before use.
## Citation
```bibtex
@misc{canis-teach-math,
title={Canis.teach Math Tutor},
author={CanisAI},
year={2024},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/CanisAI/teach-math-qwen3-4b-2507-r1}}
}
```
## Acknowledgments
- **Qwen Team** for the excellent base model
- **Unsloth** for efficient training tools
- **Hugging Face** ecosystem (Transformers, PEFT, TRL)
- Educators and contributors supporting the Canis.teach project
---
**Canis.teach** - Learning that fits.