|
from typing import Dict, List, Any |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:str): a string to be generated from |
|
parameters (:dict): generation parameters |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", {}) |
|
|
|
|
|
max_new_tokens = parameters.get("max_new_tokens", 400) |
|
temperature = parameters.get("temperature", 0.7) |
|
do_sample = parameters.get("do_sample", True) |
|
top_p = parameters.get("top_p", 0.9) |
|
return_full_text = parameters.get("return_full_text", True) |
|
|
|
|
|
input_ids = self.tokenizer(inputs, return_tensors="pt").to(self.model.device) |
|
|
|
|
|
with torch.no_grad(): |
|
generated_ids = self.model.generate( |
|
**input_ids, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
do_sample=do_sample, |
|
top_p=top_p, |
|
pad_token_id=self.tokenizer.eos_token_id, |
|
eos_token_id=self.tokenizer.eos_token_id, |
|
) |
|
|
|
|
|
if return_full_text: |
|
generated_text = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True) |
|
else: |
|
|
|
new_tokens = generated_ids[0][input_ids["input_ids"].shape[1]:] |
|
generated_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True) |
|
|
|
return [{"generated_text": generated_text}] |